首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Apathy is one of the least investigated symptom of Parkinson disease (PD). In the article there are data of frequency, diagnostic features, pathophysiology and treatment of apathy in PD. The aim of the investigation was to evaluate the frequency of apathy in PD without dementia, evaluate the relationship with other neuropsychiatric and motor disorders, influence on the life quality. 115 patients (age-63.84±0.6 years, stage 2.6±0.3) with PD without dementia were included in the investigation. There were used the following scales: scale of evaluation stages of PD by Hoehn-Yahr, UPDRS (part 〈〈activity of daily living〉〉, 〈〈motor functions 〉〉); Beck Depression Inventory, Spielberger State Trait Anxiety Inventory, Parkinson Disease Sleep Scale- PDSS, Epworth Sleepiness Scale, Parkinson Fatigue Scale-PFS- 16, SCOPA-Cog, Lilli Apathy Rating Scale LARS and Apathy Scale AS. Apathy was found in 25% of patients. The frequency and severity of apathy does not depend on stage and duration of PD. It was found positive correlation of apathy and hypokinesia. In different stages of PD there was variability of relationships of apathy with depression, executive functions and sleep disorders. We suppose the heterogeneity of apathy in PD because of the variability of the association with other neuropsychiatric (affective, cognitive, sleep) disorders. It was found the negative influence of apathy on daily activity, emotional and social aspects of life quality.  相似文献   

3.
Old Order Amish, founded by a small number of Swiss immigrants, exist in culturally isolated communities across rural North America. The consequences of genetic isolation and inbreeding within this group are evident by increased frequencies of many monogenic diseases and several complex disorders. Conversely, the prevalence of Alzheimer disease (AD), the most common form of dementia, is lower in the Amish than in the general American population. Since mitochondrial dysfunction has been proposed as an underlying cause of AD and a specific haplogroup was found to affect AD susceptibility in Caucasians, we investigated whether inherited mitochondrial haplogroups affect risk of developing AD dementia in Ohio and Indiana Amish communities. Ninety-five independent matrilines were observed across six large pedigrees and three small pedigrees then classified into seven major European haplogroups. Haplogroup T is the most frequent haplogroup represented overall in these maternal lines (35.4%) while observed in only 10.6% in outbred American and European populations. Furthermore, haplogroups J and K are less frequent (1.0%) than in the outbred data set (9.4–11.2%). Affected case matrilines and unaffected control lines were chosen from pedigrees to test whether specific haplogroups and their defining SNPs confer risk of AD. We did not observe frequency differences between AD cases compared to controls overall or when stratified by sex. Therefore, we suggest that the genetic effect responsible for AD dementia in the affected Amish pedigrees is unlikely to be of mitochondrial origin and may be caused by nuclear genetic factors.  相似文献   

4.
《Autophagy》2013,9(9):1389-1391
Mutations in ATP13A2 (PARK9) cause an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia called Kufor-Rakeb Syndrome (KRS). The ATP13A2 gene encodes a transmembrane lysosomal P5-type ATPase (ATP13A2) whose physiological function in mammalian cells, and hence its potential role in Parkinson disease (PD), remains elusive. In this context, we have recently shown that KRS-linked mutations in ATP13A2 leads to several lysosomal alterations in ATP13A2 KRS patient-derived fibroblasts, including impaired lysosomal acidification, decreased proteolytic processing of lysosomal enzymes, reduced degradation of lysosomal substrates and diminished lysosomal-mediated clearance of autophagosomes (AP). Similar alterations are observed in stable ATP13A2-knockdown dopaminergic cell lines, which are associated with cell death. Restoration of ATP13A2 levels in ATP13A2-mutant/depleted cells is able to restore lysosomal function and attenuate cell death. Relevant to PD, we have determined that ATP13A2 levels are decreased in dopaminergic nigral neurons from sporadic PD patients. Interestingly in these patients, the main signal of ATP13A2 is detected in the Lewy bodies. Our results unravel an instrumental role of ATP13A2 in lysosomal function and in cell viability. Altogether, our results validate ATP13A2 as a likely therapeutic target against PD degeneration.  相似文献   

5.
Progress of a full-genome scan for predisposition loci for affective disorder in the Old Order Amish is reported. LOD-score results have been previously published for 51 loci on chromosomes 1 and 11, collectively. The present report contains results for an additional 367 loci throughout the genome with extensive coverage on chromosomes 1, 2, 3, 4, 6, 7, 9, 10, 13, 14, 18, 19, and 21 (average marker density for these chromosomes = 10.7 cM). Analyses were conducted in a four-stage process: (1) two-point LOD scores were calculated for all loci under a dominant model with reduced penetrance, consistent with results of segregation analyses of these pedigrees; (2) a screen for the sharing of alleles in similarly affected individuals was used to highlight areas potentially important for further analysis; (3) the preceding areas and markers on densely covered chromosomes were analyzed using the affected-pedigree-member (APM) method; and (4) the sharing of extended haplotypes in affected individuals was examined in areas showing apparent clustering of significant allele sharing as assessed by the APM method. Of the 367 markers analyzed, no statistically significant LOD scores resulted. Some degree (P < .05) of allele sharing was found at 74 loci, and 3.8% of all markers analyzed (N = 14) passed more stringent significance criteria suggestive of linkage (P < or = .001 for at least one of the weighting functions). Multilocus APM and detailed exploration of extended haplotype sharing in areas highlighted by the APM analyses provided methods for more informative exploration of potentially suggestive results but did not identify areas clearly involved in the etiology of affective disorder in this population.  相似文献   

6.
《Autophagy》2013,9(5):706-708
Knockout of the ubiquitin ligase Parkin, the gene product of the Parkinson associated Park2, leads to loss of mitochondrial integrity and function in Drosophila melanogaster. Although Parkin is primarily cytosolic, we have found that Parkin is selectively recruited to dysfunctional mitochondria with low membrane potential and subsequently promotes their autophagy. Here we report that Parkin recruitment is voltage-dependent and independent of changes in ATP or pH. These findings suggest that Parkin promotes mitophagy of dysfunctional mitochondria following loss of mitochondrial membrane potential and implicate the targeted elimination of mitochondria in the pathogenesis of Parkinson disease.  相似文献   

7.
8.
Parkinson disease (PD) is a progressive neurodegenerative movement disorder characterized pathologically by abnormal SNCA/α-synuclein protein inclusions in neurons. Impaired lysosomal autophagic degradation of cellular proteins is implicated in PD pathogenesis and progression. Heterozygous GBA mutations, encoding lysosomal GBA/glucocerebrosidase (glucosidase, β, acid), are the greatest genetic risk factor for PD, and reduced GBA and SNCA accumulation are related in PD models. Here we review our recent human brain tissue study demonstrating that GBA deficits in sporadic PD are related to the early accumulation of SNCA, and dysregulation of chaperone-mediated autophagy (CMA) pathways and lipid metabolism.  相似文献   

9.
An under-appreciated clue about pathogenesis in Parkinson disease (PD) is the distribution of pathology in the early and middle stages of the disease. This pathological ‘roadmap’ shows that in addition to dopaminergic neurons in the substantia nigra pars compacta (SNc), a significant number of other central and peripheral neuronal populations exhibit Lewy pathology, phenotypic dysregulation or frank degeneration in PD patients. This spatially distributed, at-risk population of neurons shares a number of features, including autonomously generated activity, broad action potentials, low intrinsic calcium buffering capacity and long, poorly myelinated, highly branched axons. Many, and perhaps all, of these traits add to the metabolic burden in these neurons, suggesting that mitochondrial deficits could drive pathogenesis in PD—in agreement with a large segment of the literature. What is less clear is how this neuronal phenotype might shape the susceptibility to proteostatic dysfunction or to the spread of α-synuclein fibrils deposited in the extracellular space. The review explores the literature on these issues and their translational implications.  相似文献   

10.
11.
《Autophagy》2013,9(7):790-792
Mitochondrial biology has recently emerged as a key regulatory event in Parkinson disease (PD). Notably, defects in the clearance of damaged mitochondria, termed mitophagy, have been recently highlighted as a possible mechanistic explanation for neuronal loss. We have recently identified the mitochondrial rhomboid, termed PARL, as a regulator of the cells mitophagic response. Further, we have identified PD-linked mutations at a functional site in the PARL gene. Here we discuss the benefit of combining molecular genetic and cell biology approaches in understanding human disease.  相似文献   

12.
McQuibban GA  Bulman DE 《Autophagy》2011,7(7):790-792
Mitochondrial biology has recently emerged as a key regulatory event in Parkinson disease (PD). Notably, defects in the clearance of damaged mitochondria, termed mitophagy, have been recently highlighted as a possible mechanistic explanation for neuronal loss. We have recently identified the mitochondrial rhomboid, termed PARL, as a regulator of the cells mitophagic response. Further, we have identified PD-linked mutations at a functional site in the PARL gene. Here we discuss the benefit of combining molecular genetic and cell biology approaches in understanding human disease.  相似文献   

13.
To date, a truly representative animal model of Parkinson disease (PD) remains a critical unmet need. Although toxin-induced PD models have served many useful purposes, they have generally failed to recapitulate accurately the progressive process as well as the nature and distribution of the human pathology. During the last decade or so, the identification of several genes whose mutations are causative of rare familial forms of PD has heralded in a new dawn for PD modelling. Numerous mammalian as well as non mammalian models of genetically-linked PD have since been created. However, despite initial optimism, none of these models turned out to be a perfect replica of PD. Meanwhile, genetic and toxin-induced models alike continue to evolve towards mimicking the disease more faithfully. Notwithstanding this, current genetic models have collectively illuminated several important pathways relevant to PD pathogenesis. Here, we have attempted to provide a comprehensive discussion on existing genetic models of PD.  相似文献   

14.
Individuals with Parkinson disease (PD) are encountered frequently and have progressively severe neurologic changes. The central nervous system changes involve dopaminergic neurons in the basal ganglia and substantia nigra. Although usually sporadic, rare forms of PD are familial and the responsible genes have been identified. These genes affect mitochondrial function and can be studied in animals. Brains of affected animals reveal consequences of reactive oxygen species (ROS)—quinones, dopamine oxidation products, tyrosine nitration, lipid peroxidation and amino-aldehyde adducts. The three genes are important for maintaining physical and functional mitochondrial integrity. The cumulative effects of mitochondrial dysfunction, particularly those mediated by ROS, ultimately lead to at least some of the clinical and pathologic changes of PD.  相似文献   

15.
Role of mitochondria in Parkinson disease.   总被引:11,自引:0,他引:11  
The cause of the selective degeneration of nigrostriatal neurons in Parkinson disease (PD) has remained largely unknown. Exceptions include rare missense mutations in the alpha-synuclein gene on chromosome 4, a potentially pathogenic mutation affecting the ubiquitin pathway, and mutations in the parkin gene on chromosome 6. However, unlike classical PD, the latter syndrome is not associated with the formation of typical Lewy bodies. In contrast, a biochemical defect of complex I of the mitochondrial respiratory chain has been described in a relatively large group of confirmed PD cases. Recent cybrid studies indicate that the complex I defect in PD has a genetic cause and that it may arise from mutations in the mitochondrial DNA. Sequence analysis of the mitochondrial genome supports the view that mitochondrial point mutations are involved in PD pathogenesis. However, although mitochondria function as regulators in several known forms of cell death, their exact involvement in PD has remained unresolved. This is of relevance because classical apoptosis does not appear to play a major role in the degeneration of the parkinsonian nigra.  相似文献   

16.
The Old Order Amish are a healthy and well-nourished natural fertility population, so that the timing of births is not influenced by behaviours to limit family size, undernutrition or disease. The present study examines the monthly distribution of 8160 births occurring between 1920 and 1991 in the Geauga Settlement in north-east Ohio, USA. The monthly distribution of births in the Geauga Settlement is bimodal, with a major peak extending from August to October, a minor peak in February, and a major trough from April to June. This pattern is almost identical to the pattern found in the US in 1943. The monthly distribution of first births appears to be influenced to some extent by a highly significant seasonal pattern of weddings. The pattern of births in the Old Order Amish is consistent with the hypothesis that the spring trough in US births is at least partially caused by a decrease in coital frequency and/or a decrease in fecundability as a result of hot summer temperatures but is not consistent with the hypothesis that the fall peak in US births is primarily due to an increase in coital frequency during the Thanksgiving and Christmas holiday seasons.  相似文献   

17.
Mitochondrial dysfunction in idiopathic Parkinson disease.   总被引:2,自引:0,他引:2       下载免费PDF全文
Disordered mitochondrial metabolism may play an important role in a number of idiopathic neurodegenerative disorders. The question of mitochondrial dysfunction is particularly attractive in the case of idiopathic Parkinson disease (PD), since Vyas et al. recognized in the 1980s that the parkinsonism-inducing compound N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine is a mitochondrial toxin. The unique genetic properties of mitochondria also make them worthy of consideration for a pathogenic role in PD, as well as in other late-onset, sporadic neurodegenerative disorders. Although affected persons occasionally do provide family histories that suggest Mendelian inheritance, the vast majority of the time these diseases appear sporadically. Because of unique features such as heteroplasmy, replicative segregation, and threshold effects, mitochondrial inheritance can allow for the apparent sporadic nature of these diseases.  相似文献   

18.
The review highlights mitochondrial structural and functional abnormalities in Parkinson’s disease and experimental animal models of this pathology. Special attention is paid to the inactivation of mitochondrial enzymes, mutations in mitochondrial and nuclear DNA, and genomic and proteomic studies of mitochondrial proteins in Parkinson’s disease and experimental parkinsonism in animals.  相似文献   

19.
Copy number variants (CNVs) are known to cause Mendelian forms of Parkinson disease (PD), most notably in SNCA and PARK2. PARK2 has a recessive mode of inheritance; however, recent evidence demonstrates that a single CNV in PARK2 (but not a single missense mutation) may increase risk for PD. We recently performed a genome-wide association study for PD that excluded individuals known to have either a LRRK2 mutation or two PARK2 mutations. Data from the Illumina370Duo arrays were re-clustered using only white individuals with high quality intensity data, and CNV calls were made using two algorithms, PennCNV and QuantiSNP. After quality assessment, the final sample included 816 cases and 856 controls. Results varied between the two CNV calling algorithms for many regions, including the PARK2 locus (genome-wide p = 0.04 for PennCNV and p = 0.13 for QuantiSNP). However, there was consistent evidence with both algorithms for two novel genes, USP32 and DOCK5 (empirical, genome-wide p-values<0.001). PARK2 CNVs tended to be larger, and all instances that were molecularly tested were validated. In contrast, the CNVs in both novel loci were smaller and failed to replicate using real-time PCR, MLPA, and gel electrophoresis. The DOCK5 variation is more akin to a VNTR than a typical CNV and the association is likely caused by artifact due to DNA source. DNA for all the cases was derived from whole blood, while the DNA for all controls was derived from lymphoblast cell lines. The USP32 locus contains many SNPs with low minor allele frequency leading to a loss of heterozygosity that may have been spuriously interpreted by the CNV calling algorithms as support for a deletion. Thus, only the CNVs within the PARK2 locus could be molecularly validated and associated with PD susceptibility.  相似文献   

20.
Pharmacological prevention of Parkinson disease in Drosophila   总被引:11,自引:0,他引:11  
Auluck PK  Bonini NM 《Nature medicine》2002,8(11):1185-1186
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号