首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Streptomyces lydicus has been reported to produce antibiotic streptolydigin. Pitching ratios play crucial roles in primary and secondary metabolism of Streptomyces bacteria. The higher pitching ratio (30%, v/v) significantly enhanced the levels of streptolydigin products in S. lydicus. Proteome analysis revealed that betaglucosidase and UTP-glucose-1-phosphate uridylyltransferase were up-regulated to accelerate the starch hydrolyzation at the high pitching ratios. Enhancement in the levels of UDPN-acetylmuramoylalanyl-D-glutamate-2, 6-diaminopimelate ligase and glycine cleavage system aminomethyltransferase were involved in the conversion of amino acids into secondary metabolites. Additionally, the expression levels of PfkA2, PfkA3, Zwf2, SucD, GalE1, GatB, TktA1 and ThcA, associated with glycolysis, pentose phosphate pathway, TCA cycle and amino acid metabolism, were dramatically elevated at high pitching ratios, which play important roles in the enhanced streptolydigin production in S. lydicus E9. Interestingly, the levels of proteins (glutamine synthetase I, glutamate synthase subunit beta and glutamine synthetase) were down-regulated with the increases of pitching ratios and fermentation progress, revealing that pitching ratio altered the glutamine synthetase levels and consequently regulated the streptolydigin production of S. lydicus E9. The up-regulation of proteins (eg, aldehyde dehydrogenase and alkyl hydroperoxide reductase) was involved in the redox-based regulation network triggered by an imbalance of the intracellular cell redox homeostasis and by crosstalk with secondary metabolism at the higher pitching ratio. These results settle new insights into physiological facts of S. lydicus E9 in responses to pitching ratios and will eventually improve the antibiotic production schemes in industry.  相似文献   

4.
5.
Spores ofAdiantum capillus-veneris L. incubated at 25 C for 3 days in the dark were irradiated with continuous red light to induce spore germination and cell growth during following 7 days. A portion of spores were cultured for 8 days in the dark as non-irradiated control. Rhizoidal and protonemal cells were observed at 3 days after transferring spores to the irradiation conditions. During 10 days of the experimental period, changes in the contents of following cell constituents were investigated: total lipid, total soluble sugar, reducing sugar, insoluble glucan, organic acid, protein, soluble α-amino N, and major free amino acids. A large part of nutrient reserves of spores was found to be lipid, whose content decreased markedly as spores germinated. Soluble and insoluble carbohydrates also provided carbon and energy sources during imbibition and germination. Two main reserve proteins were detected by SDS-polyacrylamide gel electrophoresis. These proteins disappeared mostly during germination. Major free amino acids could be assorted into three groups by their patterns of fluctuation during the germination.  相似文献   

6.
Carbon (C) and nitrogen (N) metabolism are integrated processes that modulate many aspects of plant growth, development, and defense. Although plants with deficient N metabolism have been largely used for the elucidation of the complex network that coordinates the C and N status in leaves, studies at the whole-plant level are still lacking. Here, the content of amino acids, organic acids, total soluble sugars, starch, and phenylpropanoids in the leaves, roots, and floral buds of a nitrate reductase (NR) double-deficient mutant of Arabidopsis thaliana (nia1 nia2) were compared to those of wild-type plants. Foliar C and N primary metabolism was affected by NR deficiency, as evidenced by decreased levels of most amino acids and organic acids and total soluble sugars and starch in the nia1 nia2 leaves. However, no difference was detected in the content of the analyzed metabolites in the nia1 nia2 roots and floral buds in comparison to wild type. Similarly, phenylpropanoid metabolism was affected in the nia1 nia2 leaves; however, the high content of flavonol glycosides in the floral buds was not altered in the NR-deficient plants. Altogether, these results suggest that, even under conditions of deficient nitrate assimilation, A. thaliana plants are capable of remobilizing their metabolites from source leaves and maintaining the C–N status in roots and developing flowers.  相似文献   

7.
8.
In this study, the effect of salt stress on metabolic response of Tetragenecoccus halophilus was investigated, and the metabolic alternations were analyzed using liquid chromatography-mass spectrometry according to the metabolomics approach. A total of 81 intracellular metabolites were identified, and significant differences were observed in the levels of metabolites mainly participating in central carbon metabolism, fatty acid metabolism, and amino acid metabolism. Analysis of the membrane fatty acid distribution showed that higher proportions of unsaturated fatty acid were observed in salt-treated cells. Additionally, salt-stressed cells exhibited higher amounts of compatible solutes including proline, glycine, citrulline, and N-acetyltyrptophan, and lower amounts of branched-chain amino acids. Interestingly, higher amounts of indole, salicylic acid, and coronatine, which are regarded as signaling molecule and suggested to combat osmotic stress, were detected in salt-shocked cells compared with the untreated cells. Taken together, these results suggested that increased unsaturated membrane fatty acids, accumulation of compatible solutes, and up-regulation of signaling molecule may be potential mechanisms employed by T. halophilus during salt stress.  相似文献   

9.
We determined the activities of selected enzymes involved in carbon metabolism in free-living cells of Rhizobium tropici CFN299 grown in minimal medium with different carbon sources and in bacteroids of the same strain. The set of enzymatic activities in sucrose-grown cells suggests that the pentose phosphate pathway, with the participation of the Entner-Doudoroff pathway, is probably the primary route for sugar catabolism. In glutamate- and malate-grown cells, high activities of the gluconeogenic enzymes (phosphoenolpyruvate carboxykinase, fructose-6-phosphate aldolase, and fructose bisphosphatase) were detected. In bacteroids, isolated in Percoll gradients, the levels of activity for many of the enzymes measured were similar to those of malate-grown cells, except that higher activities of glucokinase, glucose-6-phosphate dehydrogenase, and NAD-dependent phosphogluconate dehydrogenase were detected. Phosphoglucomutase and UDP glucose pyrophosphorylase showed high and constant levels under all growth conditions and in bacteroids.  相似文献   

10.
The metabolic response of host cells, in particular of primary mammalian cells, to bacterial infections is poorly understood. Here, we compare the carbon metabolism of primary mouse macrophages and of established J774A.1 cells upon Listeria monocytogenes infection using 13C-labelled glucose or glutamine as carbon tracers. The 13C-profiles of protein-derived amino acids from labelled host cells and intracellular L. monocytogenes identified active metabolic pathways in the different cell types. In the primary cells, infection with live L. monocytogenes increased glycolytic activity and enhanced flux of pyruvate into the TCA cycle via pyruvate dehydrogenase and pyruvate carboxylase, while in J774A.1 cells the already high glycolytic and glutaminolytic activities hardly changed upon infection. The carbon metabolism of intracellular L. monocytogenes was similar in both host cells. Taken together, the data suggest that efficient listerial replication in the cytosol of the host cells mainly depends on the glycolytic activity of the hosts.  相似文献   

11.
The metabolism of carbohydrates, organic acids, amino acids and phenolics was compared between the sun‐exposed peel and the shaded peel of apple fruit. Contents of sorbitol and glucose were higher in the sun‐exposed peel, whereas those of sucrose and fructose were almost the same in the two peel types. This was related to lower sorbitol dehydrogenase activity and higher activities of sorbitol oxidase, neutral invertase and acid invertase in the sun‐exposed peel. The lower starch content in the sun‐exposed peel was related to lower sucrose synthase activity early in fruit development. Dark respiratory metabolism in the sun‐exposed peel was enhanced by the high peel temperature due to high light exposure. Activities of most enzymes in respiratory metabolism were higher in the sun‐exposed peel, but the concentrations of most organic acids were relatively stable, except pyruvate and oxaloacetate. Due to the different availability of carbon skeletons from dark respiration in the two peel types, amino acids with higher C/N ratios are accumulated in the sun‐exposed peel whereas those with lower C/N ratios are accumulated in the shaded peel. Contents of anthocyanins and flavonols and activities of phenylalanine ammonia‐lyase, UDP‐galactose:flavonoid 3‐O‐glucosyltransferase and several other enzymes were higher in the sun‐exposed peel than in the shaded peel, indicating the entire phenylpropanoid pathway is upregulated in the sun‐exposed peel. Comprehensive analyses of the metabolites and activities of enzymes involved in primary metabolism and secondary metabolism have allowed us to gain a full picture of the metabolic network in the two peel types under natural light exposure.  相似文献   

12.
Endosymbiotic bacteria from different species can live inside cells of the same eukaryotic organism. Metabolic exchanges occur between host and bacteria but also between different endocytobionts. Since a complete genome annotation is available for both, we built the metabolic network of two endosymbiotic bacteria, Sulcia muelleri and Baumannia cicadellinicola, that live inside specific cells of the sharpshooter Homalodisca coagulata and studied the metabolic exchanges involving transfers of carbon atoms between the three. We automatically determined the set of metabolites potentially exogenously acquired (seeds) for both metabolic networks. We show that the number of seeds needed by both bacteria in the carbon metabolism is extremely reduced. Moreover, only three seeds are common to both metabolic networks, indicating that the complementarity of the two metabolisms is not only manifested in the metabolic capabilities of each bacterium, but also by their different use of the same environment. Furthermore, our results show that the carbon metabolism of S. muelleri may be completely independent of the metabolic network of B. cicadellinicola. On the contrary, the carbon metabolism of the latter appears dependent on the metabolism of S. muelleri, at least for two essential amino acids, threonine and lysine. Next, in order to define which subsets of seeds (precursor sets) are sufficient to produce the metabolites involved in a symbiotic function, we used a graph-based method, PITUFO, that we recently developed. Our results highly refine our knowledge about the complementarity between the metabolisms of the two bacteria and their host. We thus indicate seeds that appear obligatory in the synthesis of metabolites are involved in the symbiotic function. Our results suggest both B. cicadellinicola and S. muelleri may be completely independent of the metabolites provided by the co-resident endocytobiont to produce the carbon backbone of the metabolites provided to the symbiotic system (., thr and lys are only exploited by B. cicadellinicola to produce its proteins).  相似文献   

13.
Ecological Genomics of Marine Roseobacters   总被引:6,自引:2,他引:4       下载免费PDF全文
Bacterioplankton of the marine Roseobacter clade have genomes that reflect a dynamic environment and diverse interactions with marine plankton. Comparative genome sequence analysis of three cultured representatives suggests that cellular requirements for nitrogen are largely provided by regenerated ammonium and organic compounds (polyamines, allophanate, and urea), while typical sources of carbon include amino acids, glyoxylate, and aromatic metabolites. An unexpectedly large number of genes are predicted to encode proteins involved in the production, degradation, and efflux of toxins and metabolites. A mechanism likely involved in cell-to-cell DNA or protein transfer was also discovered: vir-related genes encoding a type IV secretion system typical of bacterial pathogens. These suggest a potential for interacting with neighboring cells and impacting the routing of organic matter into the microbial loop. Genes shared among the three roseobacters and also common in nine draft Roseobacter genomes include those for carbon monoxide oxidation, dimethylsulfoniopropionate demethylation, and aromatic compound degradation. Genes shared with other cultured marine bacteria include those for utilizing sodium gradients, transport and metabolism of sulfate, and osmoregulation.  相似文献   

14.
The protein composition of Alteromonas sp. strain KE10 cultured at two different organic-nutrient concentrations was determined by using two-dimensional polyacrylamide gel electrophoresis. The cellular levels of three proteins, OlgA, -B, and -C, were considerably higher in cells grown in a low concentration of organic nutrient medium (LON medium; 0.2 mg of carbon per liter) than cells grown in a high concentration of organic nutrient medium (HON; 200 mg of C liter−1) or cells starved for organic nutrients. In the LON medium, the cellular levels of the Olg proteins were higher at the exponential growth phase than at the stationary growth phase. A sequence of the gene for OlgA revealed that the amino acid sequence had a high degree of similarity to the NAD+-dependent aldehyde dehydrogenases of several bacteria. OlgA, expressed in Escherichia coli, catalyzed the dehydrogenation of acetaldehyde, propionaldehyde, and butyraldehyde. The aldehyde dehydrogenase activity of KE10 was higher in cells growing exponentially in LON medium than in HON. OlgA may be involved in the growth under low-nutrient conditions. The physiological role of OlgA is discussed here.  相似文献   

15.
Metarhizium robertsii is widely applied in biological control via conidia application. To clarify the proteomic differences between conidia and mycelia and explore the underlying mechanisms of conidia as a unit responsible for dispersal and environmental stress, we carried out an iTRAQ (isobaric tags for relative and absolute quantitation)-based quantitative proteomic analysis for two developmental stages from M. robertsii. A total of 2052 proteins were detected, and 90 showed differential protein abundance between the conidia and mycelia. These 90 proteins were primarily associated with stress resistance, amino acid and protein metabolism, and energy metabolism. Further bioinformatics analysis showed that these proteins could be mapped to 52 pathways, five of which were significantly enriched after mapping to KEGG pathways. Interestingly, many proteins involved in the significantly enriched pathway of peroxisome, biosynthesis of secondary metabolites and glyoxylate and dicarboxylate metabolism, including catalase, peroxisomal membrane anchor protein, formate dehydrogenase and isocitrate lyase, were identified with higher abundance in conidia. The results deepened our understanding of the conidia proteome in M. robertsii and provide a basis for further exploration for improving the efficiency of the fungi as biocontrol agents.  相似文献   

16.
Quantitative estimates of mammary nutrient inputs, outputs and metabolism in sows are scarce, despite being critical elements to identify parameters controlling milk synthesis central for the feeding of lactating sows. The objective of this study was to quantify the mammary gland input and output of nutrients as well as the intramammary partitioning of carbon and nitrogen with the purpose to identify mechanisms controlling mammary nutrient inputs, metabolism and milk production in lactating sows. A data set was assembled by integration of results from four studies. The data set included data on litter performance, mammary arterial-venous concentration differences (AV-difference) of energy metabolites and amino acids, and the contents of lactose, fat and amino acids in milk. Milk yield was estimated based on average litter size and litter gain, and mammary plasma flow (MPF) was estimated using the sum of phenylalanine and tyrosine as internal flow markers. The yield and composition of milk were used to estimate mammary nutrient output in milk, and MPF and AV-difference were used to estimate net mammary input of carbon and nitrogen and output of CO2. Carbon and nitrogen used for the synthesis of lactose, fat and protein in milk and CO2-yielding processes were represented in a static nutrient partitioning model. The origin of mammary CO2 output was calculated using theoretical estimates of carbon released in processes supporting mammary synthesis of de novo fat, protein and lactose in milk, mammary tissue protein turnover and transport of glucose and amino acids. Results indicated that total input of carbon from glucose and lactate was partitioned into lactose (36%), fat (31%) and CO2-yielding processes (34%). Theoretical CO2 estimates indicated that de novo fat synthesis, milk protein synthesis and mammary tissue protein turnover were the main processes related to mammary CO2 production. More than 90% of mammary gland amino acid input was used for milk protein. The quadratic relationship between AV-difference and mammary input of essential amino acids indicated that both changes in AV-difference and MPF contributed to the regulation of mammary input of essential amino acids. The impact of the arterial supply of amino acids on mammary input may be greater for the branched-chain amino acids, arginine and phenylalanine than for other essential amino acids. In conclusion, relationships between input and output parameters indicate that AV-difference and MPF regulate mammary nutrient input to match the supply and demand of nutrients for the mammary gland.  相似文献   

17.
18.
19.
Carbon and nitrogen metabolism in ectomycorrhizal fungi and ectomycorrhizas   总被引:7,自引:0,他引:7  
F Martin  M Ramstedt  K S?derh?ll 《Biochimie》1987,69(6-7):569-581
The literature concerning the metabolism of carbon and nitrogen compounds in ectomycorrhizal associations of trees is reviewed. The absorption and translocation of mineral ions by the mycelia require an energy source and a reductant which are both supplied by respiratory catabolism of carbohydrates produced by the host plant. Photosynthates are also required to generate the carbon skeletons for amino acid and carbohydrate syntheses during the growth of the mycelia. Competition for photosynthates occurs between the fungal cells and the various vegetative sinks in the host tree. The nature of carbon compounds involved in these processes, their routes of metabolism, the mechanisms of control and the partitioning of metabolites between the various sites of utilization are only poorly understood. Both ascomycetous and basidiomycetous ectomycorrhizal fungi synthesize and some, if not all, accumulate mannitol, trehalose and triglycerides. The fungal strains employ the Embden--Meyerhof pathway of glucose catabolism and the key enzymes of the pentose phosphate pathway (6-phosphogluconate dehydrogenase, glucose-6-phosphate dehydrogenase, transaldolase and transketolase). Anaplerotic CO2 fixation, via pyruvate carboxylase and/or phosphoenolpyruvate carboxykinase, provides high pools of amino acids. This process could be important in the recapture and assimilation of respired CO2 in the rhizosphere. The ectomycorrhizas are thought to contain the Embden--Meyerhof pathway, the pentose phosphate pathway and the tricarboxylic acid cycle, which provide the carbon skeletons for the assimilation of ammonia into amino acids. The main route of assimilation of ammonia appears to be through the glutamine synthetase-glutamate synthase cycle in the ectomycorrhizas. Glutamate dehydrogenase plays a minor role in this process. Glutamate dehydrogenase and glutamine synthetase are present in free-living ectomycorrhizal fungi and they participate in the assimilation of ammonia and the synthesis of amino acids through the glutamate dehydrogenase/glutamine synthetase sequence. In both in vitro cultures of fungi and ectomycorrhizas, the assimilated nitrogen accumulates in glutamine. Glutamine, but also ammonia, are thought to be exported from the fungal tissues to the host cells. Studies on the metabolism of ectomycorrhizas and ectomycorrhizal fungi have focused on the metabolic pathways and compounds which accumulate in the symbiotic tissues. Studies on regulation of the overall process, and the control of enzyme activity in particular, are still fragmentary.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号