首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The voltage dependent ionic conductances were studied by analysing the phase plane trajectories of action potentials evoked by electrical stimulation of the sartorius muscles of the frog (Rana esculenta). The delayed outward potassium current was measured also under voltage clamp conditions on muscle fibres of either the frog (Rana esculenta) or Xenopus laevis. On analysing the effect of physostigmine decreasing the peak amplitude, the rate of both the rising and falling phases of the action potentials, it was revealed that the alkaloid at a concentration of 1 mmol/l reduced significantly both the delayed potassium conductance and the outward ionic current values during the action potentials. The inhibition of sodium conductance and inward ionic current was less expressed. The maximum value of delayed potassium conductance measured under voltage clamp conditions was decreased by 1 mmol/l physostigmine. The time constant determined from the development of delayed potassium conductance was increased at a given membrane potential. The voltage vs. n relationship describing the membrane potential dependence of the delayed rectifier was not influenced by physostigmine. It has been concluded that physostigmine changes the time course of the action potentials by decreasing the value of both voltage dependent ionic conductances and by slowing down their kinetics. It is discussed that results obtained from the phase plane analysis of complex pharmacological effects can only be accepted with some restrictions.  相似文献   

2.
In this review the recent studies related to the voltage dependent K+ channels are discussed. During the last 15 years the molecular cloning revealed a large number of alpha-subunits of voltage dependent K+ channels. This approach enabled to elucidate the properties of different types of channels and, in particular, characteristics of such structural elements as auxiliary subunits. These subunits are mainly responsible for the ionic permeability features of alpha-subunits. There are several cytoplasmic and membrane-associated auxiliary subunits such as beta-subunits, minK (minimal K+ channel peptide), MiRP (minK-related peptide), KChAP (K+ channel-associated protein), KChIP (K+ channel-interacting protein) and NCS (neuronal calcium sensor).  相似文献   

3.
We have previously reported that intraceliac infusion of leptin induces a reduction of meal size that depends on intact vagal afferents. This effect of leptin is enhanced in the presence of cholecystokinin (CCK). The mechanisms by which leptin and CCK activate vagal afferent neurons are not known. In the present study, we have begun to address this question by using patch-clamp electrophysiological techniques to examine the mechanisms by which leptin and CCK activate cultured vagal afferents from adult rat nodose ganglia. We found that leptin depolarized 41 (60%) of 68 neurons. The magnitude of membrane depolarization was dependent on leptin concentration and occurred in both capsaicin-sensitive and capsaicin-insensitive neurons. We also found that a majority (16 of 22; 73%) of nodose neurons activated by leptin were also sensitive to CCK. CCK-induced depolarization was primarily associated with the increase of an inward current (11 of 12), whereas leptin induced multiple changes in background conductances through a decrease in an outward current (7 of 13), an increase in an inward current (3 of 13), or both (3 of 13). However, further isolation of background currents by recording in solutions that contained only sodium or only potassium revealed that both leptin and CCK were capable of increasing a sodium-dependent conductance or inhibiting a potassium-dependent conductance. Our results support the hypothesis that vagal afferents are a point of convergence and integration of leptin and CCK signaling for control of food intake and suggest multiple ionic mechanisms by which leptin and CCK activate vagal afferent neurons. cholecystokinin; vagal afferents; capsaicin; satiation  相似文献   

4.
5.
A comparative analysis was made of the distribution of vestibular efferent neurons projecting to the saccule and efferent cells sending out axons to the auditory nerve ("cochlear efferent neurons") in the guinea pig, using retrograde horseradish peroxidase axonal transport techniques. Saccular efferent neurons were discovered bilaterally in the subependymal granular layer at the base of the fourth cerebral ventricle and laterally to the facial nerve genu ispsilaterally in the parvocellular reticular nucleus, as well as nuclei of the superior olivary complex: the lateral olivary nucleus and lateral nucleus of the trapezoid body. Cochlear efferent neurons are located ipsilaterally in the pontine reticular caudal nucleus, in the anteroventral cochlear nucleus, and in the lateral and medial olivary nuclei. Neurons were found contralaterally in the medial nucleus of the trapezoid body. It thus emerged that location zones of vestibular saccular efferent neurons and those of cochlear efferent units partially overlapped. The possible involvement of saccular vestibular efferent neurons in the mechanisms of auditory perception is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 5, pp. 657–665, September–October, 1990.  相似文献   

6.
The control of free intracellular calcium concentration ([Ca2+]i) is necessary for cell survival because of the ubiquitous and essential role this second messenger plays in regulating numerous intracellular processes. Calcium regulation in neurons is especially vigorous because of the large calcium influx that occurs through voltage-gated channels during membrane depolarization. In this study we examined changes in ionic currents that can limit calcium influx into neurons during electrical activity. We found that the [Ca2+]i in electrically stimulated Helisoma B4 neurons initially increased to a peak and then relaxed to lower concentrations in tandem with a decline in the action potential peak voltage. The decline in [Ca2+]i and the peak action potential voltage in this sodium and calcium driven neuron was found to be a dual manifestation of I(Na) and I(Ca) inactivation. I(Na) and I(Ca) both displayed voltage dependent inactivation. Additionally, I(Na) and I(Ca) progressively inactivated at [Ca2+]i above 200 nM, concentrations readily attained in electrically stimulated B4 neurons. Calcium and voltage dependent I(Na) and I(Ca) inactivation were found to reduce calcium influx during continuous electrical stimulation by decreasing both the magnitude of I(Ca) that could be activated and the percent of the available I(Ca) that would be activated due to the diminished peak action potential voltage. Calculations based on data herein suggest that the voltage and calcium dependent I(Na) and I(Ca) inactivation that occurs during continuous electrical stimulation dramatically reduces calcium influx in this sodium and calcium driven neuron and thus limits the increase in [Ca2+]i.  相似文献   

7.
ABSTRACT: In the retina, the ability to encode graded depolarizations into spike trains of variable frequency appears to be a specific property of retinal ganglion neurons (RGNs). To deduce the developmental changes in ion conductances underlying the transition from single to repetitive firing, patch-clamp recordings were performed in the isolated mouse retina between embryonic day 15 (E15) and postnatal day 5 (P5). Immature neurons of the E15 retina were selected according to their capacity to generate voltage-activated Na+ currents (I(Na)(v)). Identification of P5 RGNs was based on retrograde labeling, visualization of the axon, or the amplitude of I(Na)(v). At E15, half of the cells were excitable but none of them generated more than one spike. At P5, all cells were excitable and a majority discharged in tonic fashion. Ion conductances subserving maintenance of repetitive discharge were identified at P5 by exposure to low extracellular Ca2+, Cd2+, and charybdotoxin, all of which suppressed repetitive discharge. omega-Conotoxin GVIA and nifedipine had no effect. We compared passive membrane properties and a variety of voltage-activated ion channels at E15 and P5. It was found that the density of high voltage-activated (HVA) Ca2+ currents increased in parallel with the development of repetitive firing, while the density of Ni2+-sensitive low voltage-activated (LVA) Ca2+ currents decreased. Changes in density and activation kinetics of tetrodotoxin-sensitive Na+ currents paralleled changes in firing thresholds and size of action potentials, but seemed to be unrelated to maintenance of repetitive firing. Densities of A-type K+ currents and delayed rectifier currents did not change. The results suggest that HVA Ca2+ channels, and among them a toxin-resistant subtype, are specifically engaged in activation of Ca2+-sensitive K+ conductance and thereby account for frequency coding in postnatal RGNs.  相似文献   

8.
Mitochondrial porin or VDAC (Voltage Dependent Anion selective Channels) was identified for the first time in 1976, on the basis of the evolutionary similarity between the gram negative and mitochondrial outer membranes. Since this achievement VDAC has been extensively investigated: its functional features have been sharply defined upon reconstitution in artificial membranes and its sequence has been determined in many genomes. Unfortunately the tertiary structure has not yet been solved, mainly because it proved to be very difficult to get suitable crystals. Despite this established knowledge, in the last few years this protein has attracted renewed interest. There are two main reasons for this interest: the discovery, in most eukaryotes, of a family of genes encoding VDAC isoforms and the claims of VDAC involvement in the intrinsic pathway of apoptosis and in particular in the mechanism of cytochrome c release from mitochondria. We can affirm that nowadays the eukaryotic porin (or VDAC) is studied in a more general cellular contest, looking at the interactions and integration with other molecules, since VDAC is in a crucial position in the cell, forming the main interface between the mitochondrial and the cellular metabolisms. In this minireview we will briefly focus our attention onto the following topics: 1) recent advances about the structure of VDAC; 2) the VDAC-related multigene families; 3) the presence, targeting and function of VDAC in various cell membranes.  相似文献   

9.
Neuropeptides in sensory neurons in relation to peripheral functions   总被引:3,自引:0,他引:3  
X Y Hua 《生理科学进展》1988,19(4):304-309
  相似文献   

10.
Bats, like other mammals, are known to use interaural intensity differences (IID) to determine azimuthal position. In the lateral superior olive (LSO) neurons have firing behaviors which vary systematically with IID. Those neurons receive excitatory inputs from the ipsilateral ear and inhibitory inputs from the contralateral one. The IID sensitivity of a LSO neuron is thought to be due to delay differences between the signals coming from both ears, differences due to different synaptic delays and to intensity-dependent delays. In this paper we model the auditory pathway until the LSO. We propose a learning scheme where inputs to LSO neurons start out numerous with different relative delays. Spike timing-dependent plasticity (STDP) is then used to prune those connections. We compare the pruned neuron responses with physiological data and analyse the relationship between IID’s of teacher stimuli and IID sensitivities of trained LSO neurons.  相似文献   

11.
12.
13.
Skliarov OP 《Biofizika》2007,52(6):1128-1135
Leaked-integrate-and-fire coupled oscillators (LIFs) were used as a model of electrophysiological activity. The activity of these oscillators determines the speech rhythm, which is governed by the square-law map with inhibition as a controlling parameter. Regular rhythms of convulsive repetitions at early stuttering are changed, however, by a mixture of repetitions and neurotic pauses. This mixture is a "stumbling block" for clinicians. Due to delays, only inhibitory LIFs are capable to create the synchronic activity in-phase or in-anti-phase at medial or at low coupling. This activity has the form of slow oscillations damping to the background level. Splashes of the activity above or below the level lead to neurotic disorders or to convulsive repetitions. Really, increased due to GABA the coupling leads to a reduction of stuttering.  相似文献   

14.

Background

Neural cells deficient for Polycomb group (PcG) protein Bmi1 are impaired in the formation and differentiation of high grade glioma, an incurable cancer of the brain. It was shown that mechanisms involved in cell adhesion and migration were specifically affected in these tumors.

Methods

Using biochemical and cell biological approaches, we investigated the adhesive capacities of Bmi1;Ink4a/Arf deficient primary neural stem cells (NSCs).

Results

Bmi1;Ink4a/Arf deficient NSCs have altered expression of Collagen-related genes, secrete increased amounts of extracellular matrix, and exhibit enhanced cell–matrix binding through the Beta-1 Integrin receptor. These traits are independent from the well described role of Bmi1 as repressor of the Ink4a/Arf tumor suppressor locus.

Conclusion

In addition to proliferative processes, Bmi1 controls the adhesive capacities of primary NSCs by modulating extracellular matrix secretion.

General significance

Since PcG protein Bmi1 is important for both normal development and tumorigenesis, it is vital to understand the complete network in which this protein acts. Whereas it is clear that control of Ink4a/Arf is a major Bmi1 function, there is evidence that other downstream mechanisms exist. Hence, our novel finding that Bmi1 also governs cell adhesion significantly contributes to our understanding of the PcG proteins.  相似文献   

15.
Methyl-benzimidazole-2-ylcarbamate (MBC) inhibits the mitotic cell cycle of Saccharomyces cerevisiae at a stage subsequent to DNA synthesis and before the completion of nuclear division (Quinlan, R. A., C. I. Pogson, and K, Gull, 1980, J Cell Sci., 46: 341-352). The step in the cell cycle that is sensitive to MBC inhibition was ordered to reciprocal shift experiments with respect to the step catalyzed by cdc gene products. Execution of the CDC7 step is required for the initiation of DNA synthesis and for completion of the MBC-sensitive step. Results obtained with mutants (cdc2, 6, 8, 9, and 21) defective in DNA replication and with an inhibitor of DNA replication (hydroxyurea) suggest that some DNA replication required for execution of the MBC-sensitive step but that the completion of replication is not. Of particular interest were mutants (cdc5, 13, 14, 15, 16, 17, and 23) that arrest cell division after DNA replication but before nuclear division since previous experiments had not been able to resolve the pathway of events in this part of the cell cycle. Execution of the CDC17 step was found to be a prerequisite for execution of the MBC- sensitive step; the CDC13, 16 and 23 steps are executed independently of the MBC-sensitive step; execution of the MBC-sensitive step is prerequisite for execution of the MBC-sensitive step; execution of the MBC-sensitive step is prerequisite for execution of the CDC14 and 23 steps. These results considerably extend the dependent pathway of events that constitute the cell cycle of S. cerevisiae.  相似文献   

16.
Dihydroceramide desaturases are evolutionarily conserved enzymes that convert dihydroceramide (dhCer) to ceramide (Cer). While elevated Cer levels cause neurodegenerative diseases, the neuronal activity of its direct precursor, dhCer, remains unclear. We show that knockout of the fly dhCer desaturase gene, infertile crescent (ifc), results in larval lethality with increased dhCer and decreased Cer levels. Light stimulation leads to ROS increase and apoptotic cell death in ifc‐KO photoreceptors, resulting in activity‐dependent neurodegeneration. Lipid‐containing Atg8/LC3‐positive puncta accumulate in ifc‐KO photoreceptors, suggesting lipophagy activation. Further enhancing lipophagy reduces lipid droplet accumulation and rescues ifc‐KO defects, indicating that lipophagy plays a protective role. Reducing dhCer synthesis prevents photoreceptor degeneration and rescues ifc‐KO lethality, while supplementing downstream sphingolipids does not. These results pinpoint that dhCer accumulation is responsible for ifc‐KO defects. Human dhCer desaturase rescues ifc‐KO larval lethality, and rapamycin reverses defects caused by dhCer accumulation in human neuroblastoma cells, suggesting evolutionarily conserved functions. This study demonstrates a novel requirement for dhCer desaturase in neuronal maintenance in vivo and shows that lipophagy activation prevents activity‐dependent degeneration caused by dhCer accumulation.  相似文献   

17.
18.
19.
20.
Mice that lack caspase-3, which functions in apoptosis, were generated by gene targeting and shown to undergo hearing loss. The ABR threshold of the caspase-3(-/-) mice was significantly elevated compared to that of caspase-3(+/+) mice at 15 days of age and was progressively elevated further by 30 days. Distortion product otoacoustic emissions were not detectable in caspase-3(-/-) mice at 15 days of age. Caspase-3(-/-) mice exhibited marked degeneration of spiral ganglion neurons and a loss of inner and outer hair cells in the cochlea at 30 days of age, although no such changes were apparent at 15 days. The degenerating neurons manifested features, including cytoplasmic vacuolization, distinct from those characteristic of apoptosis. Spiral ganglion neurons and cochlear hair cells thus appear to require caspase-3 for survival but not for initial development. The mapping of both the human caspase-3 gene and the locus responsible for an autosomal dominant, nonsyndromic form of hearing loss (DFNA24) to chromosome 4q35 suggests that the caspase-3(-/-) mice may represent a model of this human condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号