首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that craniofacial bone marrow stromal cells (MSCs) have greater osteogenic potential than appendicular bone MSCs. However, detailed phenotypic characterization of MSCs from bone marrow in the different sites remains unclear. To investigate bone repair and regeneration of craniofacial MSCs and the regulatory mechanisms underlying their unique properties, we compared osteogenesis, cell recruitment, autophagy, and apoptosis resistance of MSCs from the mandible (M-MSCs) to those from tibia (T-MSCs) in vitro and in vivo. Compared with T-MSCs, M-MSCs formed more colonies, possessed stronger proliferation activity, exhibited higher expression of pluripotency genes such as Oct4 and Nanog, and held stronger osteogenic differentiation in osteogenic medium. Moreover, M-MSCs had greater autophagy and anti-apoptotic capacities than T-MSCs under hypoxia and serum deprivation conditions. M-MSCs were found to be more capable of recruiting more MSCs than T-MSCs. When these MSCs were transplanted into mandible critical-sized defects, more bone formed in the M-MSC-treated animals than in their T-MSC counterparts. Collectively, these findings reveal that MSCs have unique characteristics and bone-repairing properties from the mandible as compared with those from tibia, presumably by enhanced osteogenic potential, cell recruitment, autophagy and apoptosis resistance.  相似文献   

2.
Bortezomib (BZB) is a chemotherapeutic agent approved for treating multiple myeloma (MM) patients. In addition, there are several reports showing that bortezomib can induce murine mesenchymal stem cells (MSCs) to undergo osteogenic differentiation and increase bone formation in vivo. MSCs are the multipotent stem cells that have capacity to differentiate into several mesodermal derivatives including osteoblasts. Nowadays, MSCs mostly bone marrow derived have been considered as a valuable source of cell for tissue replacement therapy. In this study, the effect of bortezomib on the osteogenic differentiation of human MSCs derived from both bone marrow (BM-MSCs) and postnatal sources such as placenta (PL-MSCs) were investigated. The degree of osteogenic differentiation of BM-MSCs and PL-MSCs after bortezomib treatment was assessed by alkaline phosphatase (ALP) activity, matrix mineralization by Alizarin Red S staining and the expression profiles of osteogenic differentiation marker genes, Osterix, RUNX2 and BSP. The results showed that 1 nM and 2 nM BZB can induce osteogenic differentiation of BM-MSCs and PL-MSCs as demonstrated by increased ALP activity, increased matrix mineralization and up-regulation of osteogenic differentiation marker genes, Osterix, RUNX2 and BSP as compared to controls. The enhancement of osteogenic differentiation of MSCs by bortezomib may lead to the potential therapeutic applications in human diseases especially patients with osteopenia.  相似文献   

3.
The use of perinatal mesenchymal stem cells (MSCs) in bone tissue regeneration and engineering to substitute bone marrow MSCs has drawn great interest due to their high yield, ease of procurement, multilineage differentiation potential and lack of ethical concerns. Although amniotic membrane (AM) and Wharton’s jelly (WJ)-derived MSCs have been widely shown to possess osteogenic differentiation potential, the intrinsic properties determining their osteogenic capacity remain unclear. Here, we compared gene expression profiles of AM- and WJ-MSCs at basal and osteogenic conditions by using the NanoString Stem Cell Panel containing regulatory genes associated with stemness, self-renewal, Wnt, Notch and Hedgehog signalling pathways. At basal condition, WJ-MSCs displayed higher expression in most genes regardless of their functional roles in self-renewal, adhesion, or differentiation signalling pathways. After osteo-induction, elevated expression of self-renewal genes ADAR and PAFAH1B1 was observed in AM-MSCs, while stemness genes MME and ALDH1A1 were upregulated in WJ-MSC. Both MSCs showed differences in genes associated with ligands, receptors and ubiquitin ligases of the Notch pathway. In addition, further evidence was demonstrated in some signalling molecules including CTBPs, protein kinases, phosphatases, RHOA, RAC1. Downstream targets HES1 and JUN especially showed higher expression in non-induced WJ-MSCs. Hedgehog genes initially expressed in both MSCs were downregulated in WJ-MSCs during osteogenesis. This study has provided insights into the intrinsic biological differences that may lead to their discrimination in therapeutic intervention.  相似文献   

4.
The effects of microgravity that were simulated using clinoritation and cell exposure in a Random Positioning Machine (RPM; Dutch Space, Netherlands) on the production of interleukins by mesenchymal stromal cells (MSCs) of the human bone marrow were studied. Additionally, interleukins production was studied in osteogenic derivatives of MSCs induced by growth factors, such as 10−8 M dexamethasone, 0.2 mM ascorbic acid, and 10 mM β-glycerolphosphate. Twenty-day clinoritation resulted in an increase in the interleukin-8 (IL-8) level by a factor of 1.4–3.2 in the culture medium of MSCs and their osteogenic derivatives. Exposure of cells to RPM was followed by an increase in IL-8 production by factors of 1.5–6 and 1.6–2.1 after 10 and 20 days of the treatment, respectively. MSCs and their osteogenic derivatives exhibited a tendency towards a decrease in the release of IL-6 into the culture medium after simulation of microgravity with RPM. Thus, in different models, microgravity modified production of interleukins in MSCs and mature cells with the osteogenic phenotype.  相似文献   

5.
The periodontal ligament (PDL) is one of the connective tissues located between the tooth and bone. It is characterized by rapid turnover. Periodontal ligament fibroblasts (PDLFs) play major roles in the rapid turnover of the PDL. Microarray analysis of human PDLFs (HPDLFs) and human dermal fibroblasts (HDFs) demonstrated markedly high expression of chemokine (CXC motif) ligand 12 (CXCL12) in the HPDLFs. CXCL12 plays an important role in the migration of mesenchymal stem cells (MSCs). The function of CXCL12 in the periodontal ligament was investigated in HPDLFs. Expression of CXCL12 in HPDLFs and HDFs was examined by RT-PCR, qRT-PCR and ELISA. Chemotactic ability of CXCL12 was evaluated in both PDLFs and HDFs by migration assay of MSCs. CXCL12 was also immunohistochemically examined in the PDL in vivo. Expression of CXCL12 in the HPDLFs was much higher than that in HDFs in vitro. Migration assay demonstrated that the number of migrated MSCs by HPDLFs was significantly higher than that by HDFs. In addition, the migrated MSCs also expressed CXCL12 and several genes that are familiar to fibroblasts. CXCL12 was immunohistochemically localized in the fibroblasts in the PDL of rat molars. The results suggest that PDLFs synthesize and secrete CXCL12 protein and that CXCL12 induces migration of MSCs in the PDL in order to maintain rapid turnover of the PDL.  相似文献   

6.

Introduction

Bone morphogenetic proteins (BMPs) are critical growth factors in the osteogenic differentiation of progenitor cells during development in embryos and fracture repair in adults. Although recombinant BMPs are in use clinically, their clinical efficiency needs to be improved. The biological activities of BMPs are naturally regulated by extracellular binding proteins. The specific hypotheses tested in this study were as follows: the BMP inhibitor chordin is produced endogenously during the osteogenic differentiation of human mesenchymal stem cells (MSCs); and blockade of the activity of the BMP inhibitor increases the rate of osteogenic differentiation of human MSCs in vitro.

Methods

Human MSCs were derived from bone marrow from an iliac crest aspirate and from patients undergoing hip hemiarthroplasty. The MSCs were induced down the osteogenic pathway using standard osteogenic differentiation media, and expressions of BMP-2 and chordin were determined by gene expression analysis. During osteogenic differentiation, chordin knockdown was induced using RNA interference. Osteogenic differentiation was assessed by measuring the expression of alkaline phosphatase and calcium deposition. The differences in expression of osteogenic makers between groups were compared by analysis of variance, followed by Gabriel post hoc test.

Results

We demonstrate the expression of BMP-2 and chordin in human MSCs during osteogenic differentiation. Knockdown of chordin by RNA interference in vitro resulted in a significant increase in the expression of the osteogenic marker alkaline phosphatase and the deposition of extracellular mineral, in response to osteogenic stimulation.

Conclusion

We conclude that endogenously produced chordin constrains the osteogenic differentiation of human MSCs. The targeting of BMP inhibitors, such as chordin, may provide a novel strategy for enhancing bone regeneration.  相似文献   

7.
8.
The two mesenchymal stem cell (MSC) populations that have gained most attention in relation to bone tissue engineering are adipose tissue (AT) MSCs and bone marrow (BM) MSCs. The purpose of this study was to investigate the ability of human BM-MSCs and AT-MSCs to survive, proliferate and deposit collagen type 1 when cultured on polycaprolactone nanofiber scaffolds and to ascertain the effect of medium composition on collagen type 1 formation and expression of osteogenic genes. The cells were seeded on polycaprolactone nanofiber scaffolds and cultured in three different types of media that differed by the presence of ascorbic acid, β-glycerophosphate and dexamethasone, that are typical components used for osteogenic differentiation of MSCs in vitro.In summary, AT-MSCs were proliferating significantly faster than BM-MSCs. AT-MSCs also showed better ability to deposit collagen type 1 and had a higher expression of early osteogenic markers, whereas BM-MSCs had higher expression of late osteogenic markers. This suggests that MSCs from diverse sources have different attributes and with respect to osteogenic differentiation, AT-MSCs are more immature compared to BM-MSCs. Collagen formation was depending on medium composition and the organization of collagen type 1 appeared to be influenced by the presence of dexamethasone.  相似文献   

9.
Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity.  相似文献   

10.
p53 plays a pivotal role in controlling the differentiation of mesenchymal stem cells (MSCs) by regulating genes involved in cell cycle and early steps of differentiation process. In the context of osteogenic differentiation of MSCs and bone homeostasis, the osteoprotegerin/receptor activator of NF-κB ligand/receptor activator of NF-κB (OPG/RANKL/RANK) axis is a critical signaling pathway. The absence or loss of function of p53 has been implicated in aberrant osteogenic differentiation of MSCs that results in higher bone formation versus erosion, leading to an unbalanced bone remodeling. Here, we show by microCT that mice with p53 deletion systemically or specifically in mesenchymal cells possess significantly higher bone density than their respective littermate controls. There is a negative correlation between p53 and OPG both in vivo by analysis of serum from p53+/+, p53+/−, and p53−/− mice and in vitro by p53 knockdown and ChIP assay in MSCs. Notably, high expression of Opg or its combination with low level of p53 are prominent features in clinical cancer lesion of osteosarcoma and prostate cancer respectively, which correlate with poor survival. Intra-bone marrow injection of prostate cancer cells, together with androgen can suppress p53 expression and enhance local Opg expression, leading to an enhancement of bone density. Our results support the notion that MSCs, as osteoblast progenitor cells and one major component of bone microenvironment, represent a cellular source of OPG, whose amount is regulated by the p53 status. It also highlights a key role for the p53-OPG axis in regulating the cancer associated bone remodeling.Subject terms: Cell biology, Pathogenesis  相似文献   

11.
Administration of mesenchymal stem cells (MSCs) has the potential to ameliorate degenerative disorders and to repair damaged tissues. The homing of transplanted MSCs to injured sites is a critical property of engraftment. Our aim was to identify microRNAs involved in controlling MSC proliferation and migration. MSCs can be isolated from bone marrow and umbilical cord Wharton’s jelly (BM-MSCs and WJ-MSCs, respectively), and WJ-MSCs show poorer motility yet have a better amplification rate compared with BM-MSCs. Small RNA sequencing revealed that miR-146a-5p is significantly overexpressed and has high abundance in WJ-MSCs. Knockdown of miR-146a-5p in WJ-MSCs inhibited their proliferation yet enhanced their migration, whereas overexpression of miR-146a-5p in BM-MSCs did not influence their osteogenic and adipogenic potentials. Chemokine (C-X-C motif) ligand 12 (CXCL12), together with SIKE1, which is an I-kappa-B kinase epsilon (IKKε) suppressor, is a direct target of miR-146a-5p in MSCs. Knockdown of miR-146a-5p resulted in the down-regulation of nuclear factor kappa-B (NF-κB) activity, which is highly activated in WJ-MSCs and is known to activate miR-146a-5p promoter. miR-146a-5p is also downstream of CXCL12, and a negative feedback loop is therefore formed in MSCs. These findings suggest that miR-146a-5p is critical to the uncoupling of motility and proliferation of MSCs. Our miRNome data also provide a roadmap for further understanding MSC biology.  相似文献   

12.
13.
IntroductionIn China Herba Epimedii is one of the most common herbs that could be prescribed for treating osteoporosis. It is known to increase the overall mineral content, therefore, to promote bone formation and to increase lumbar bone mineral density (BMD). The present study was aimed at investigating the effect of flavonoids of Herba Epimedii (HEF) on osteogenesis in human MSCs.MethodsThe human bone marrow-derived MSCs (BM-MSCs) were isolated and their osteogenic differentiation was evaluated by their alkaline phosphatase (ALP) activities and level of mineralization. After treating with total flavonoids during osteogenic differentiation process, differential mRNA expression was examined by RT-PCR.ResultsThe total time needed for osteogenic differentiation of BM-MSCs was significantly shortened by adding HEF. Up-regulation of mRNA expression by HEF was observed for several marker genes and osteogenic regulators. HEF was also found to inhibit osteoclastogenesis of MSCs by enhancing the ratio OPG/RANKL.ConclusionsOur study demonstrated that the HEF could improve osteogenic differentiation and inhibit the osteoclast differentiation of BM-MSCs concurrently.  相似文献   

14.
15.
16.
Adipokine adiponectin (APN) has been recently reported to play a role in regulating bone mineral density (BMD). To explore the mechanism by which APN affects BMD, we investigated BMD and biomechanical strength properties of the femur and vertebra in sham-operated (Sham) and ovariectomized (OVX) APN knockout (KO) mice as compared to their operated wild-type (WT) littermates. The results show that APN deficiency has no effect on BMD but induces increased ALP activity and osteoclast cell number. While OVX indeed leads to significant bone loss in both femora and vertebras of WT mice with comparable osteogenic activity and a significant increase in osteoclast cell number when compared to that of sham control. However, no differences in BMD, ALP activity and osteoclast cell number were found between Sham and OVX mice deficient for APN. Further studies using bone marrow derived mesenchymal stem cells (MSCs) demonstrate an enhanced osteogenic differentiation and extracellular matrix calcification in APN KO mice. The possible mechanism for APN deletion induced acceleration of osteogenesis could involve increased proliferation of MSCs and higher expression of Runx2 and Osterix genes. These findings indicate that APN deficiency can protect against OVX-induced osteoporosis in mice, suggesting a potential role of APN in regulating the balance of bone formation and bone resorption, especially in the development of post-menopausal osteoporosis.  相似文献   

17.
Culture of mesenchymal stem cells (MSCs) under ambient conditions does not replicate the low oxygen environment of normal physiological or pathological states and can result in cellular impairment during culture. To overcome these limitations, we explored the effect of hypoxia (1 % O2) on the biological characteristics of MSCs over the course of different culture periods. The following biological characteristics were examined in human bone marrow-derived MSCs cultured under hypoxia for 8 weeks: proliferation rate, morphology, cell size, senescence, immunophenotypic characteristics, and the expression levels of stemness-associated factors and cytokine and chemokine genes. MSCs cultured under hypoxia for approximately 2 weeks showed increased proliferation and viability. During long-term culture, hypoxia delayed phenotypic changes in MSCs, such as increased cell volume, altered morphology, and the expression of senescence-associated-β-gal, without altering their characteristic immunophenotypic characteristics. Furthermore, hypoxia increased the expression of stemness and chemokine-related genes, including OCT4 and CXCR7, and did not decrease the expression of KLF4, C-MYC, CCL2, CXCL9, CXCL10, and CXCR4 compared with levels in cells cultured under normoxia. In conclusion, low oxygen tension improved the biological characteristics of MSCs during ex vivo expansion. These data suggest that hypoxic culture could be a useful method for increasing the efficacy of MSC cell therapies.  相似文献   

18.
Collagen has been widely shown to promote osteogenesis of bone marrow mesenchymal stromal cells (BM-MSCs). Due to the invasive procedure of obtaining BM-MSCs, MSCs from other tissues have emerged as a promising alternative for regenerative therapy. MSCs originated from different sources, exhibiting different differentiation potentials. Therefore, the applicability of collagen type I (COL), combining with amniotic membrane (AM)-MSCs was examined through proliferation and differentiation assays together with the expression of surface markers and genes associated with stemness and differentiation under basal or induction conditions. No increase in cell growth was observed because AM-MSCs might be directed toward spontaneous osteogenesis. This was evidenced by the calcium deposition and elevated expression of osteogenic genes when AM-MSCs were cultured in collagen plate with basal media. Under the osteogenic condition, reciprocal expression of OCN and CEBPA suggested a shift toward adipogenesis. Surprisingly, adipogenic genes were not elevated upon adipogenic induction, although oil droplets deposition was observed. In conclusion, our findings demonstrated that collagen causes spontaneous osteogenesis in AM-MSCs. However, the presence of exogenous inductors could shift the direction of adipo-osteogenic gene regulatory network modulated by collagen.  相似文献   

19.
Mesenchymal stromal cells (MSCs) have the potential to differentiate into a variety of mature cell types and are a promising source of regenerative medicine. The success of regenerative medicine using MSCs strongly depends on their differentiation potential. In this study, we sought to identify marker genes for predicting the osteogenic differentiation potential by comparing ilium MSC and fibroblast samples. We measured the mRNA levels of 95 candidate genes in nine ilium MSC and four fibroblast samples before osteogenic induction, and compared them with alkaline phosphatase (ALP) activity as a marker of osteogenic differentiation after induction. We identified 17 genes whose mRNA expression levels positively correlated with ALP activity. The chondrogenic and adipogenic differentiation potentials of jaw MSCs are much lower than those of ilium MSCs, although the osteogenic differentiation potential of jaw MSCs is comparable with that of ilium MSCs. To select markers suitable for predicting the osteogenic differentiation potential, we compared the mRNA levels of the 17 genes in ilium MSCs with those in jaw MSCs. The levels of 7 out of the 17 genes were not substantially different between the jaw and ilium MSCs, while the remaining 10 genes were expressed at significantly lower levels in jaw MSCs than in ilium MSCs. The mRNA levels of the seven similarly expressed genes were also compared with those in fibroblasts, which have little or no osteogenic differentiation potential. Among the seven genes, the mRNA levels of IGF1 and SRGN in all MSCs examined were higher than those in any of the fibroblasts. These results suggest that measuring the mRNA levels of IGF1 and SRGN before osteogenic induction will provide useful information for selecting competent MSCs for regenerative medicine, although the effectiveness of the markers is needed to be confirmed using a large number of MSCs, which have various levels of osteogenic differentiation potential.  相似文献   

20.
《Cytotherapy》2020,22(11):653-668
Background aimsMesenchymal stroma/stem-like cells (MSCs) are a popular cell source and hold huge therapeutic promise for a broad range of possible clinical applications. However, to harness their full potential, current limitations in harvesting, expansion and characterization have to be overcome. These limitations are related to the heterogeneity of MSCs in general as well as to inconsistent experimental protocols. Here we aim to compare in vitro methods to facilitate comparison of MSCs generated from various tissues.MethodsMSCs from 3 different tissues (bone marrow, dental pulp, adipose tissue), exemplified by cells from 3 randomly chosen donors per tissue, were systematically compared with respect to their in vitro properties after propagation in specific in-house standard media, as established in the individual laboratories, or in the same commercially available medium.ResultsLarge differences were documented with respect to the expression of cell surface antigens, population doubling times, basal expression levels of 5 selected genes and osteogenic differentiation. The commercial medium reduced differences in these parameters with respect to individual human donors within tissue and between tissues. The extent, size and tetraspanin composition of extracellular vesicles were also affected.ConclusionsThe results clearly demonstrate the extreme heterogeneity of MSCs, which confirms the problem of reproducibility of results, even when harmonizing experimental conditions, and questions the significance of common parameters for MSCs from different tissues in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号