首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BEN is a novel molecule of the immunoglobulin superfamily that we previously identified by means of a monoclonal antibody on neural cell populations during avian development and epithelial cells of the bursa of Fabricius. In this paper, we describe the expression of BEN by hemopoietic cells during ontogeny. In the thymus, BEN is expressed as early as E9, and from E12 until just after hatching 30-60% of thymocytes are BEN positive. Thus the cells expressing BEN are immature thymocytes and not yet differentiated T cells. In the spleen, BEN expression parallels the myelopoietic activity. It is present on 75% of splenocytes during embryonic development and falls rapidly to 20% of cells during the first week after hatching when the spleen is becoming a secondary lymphoid organ. BEN is also found on a large proportion (about 80% positive cells) of bone marrow cells during ontogeny. Post hatching, BEN is present on 40-50% of bone marrow cells. The population of BEN-positive cells in the bone marrow includes myeloid and erythroid progenitor cells, identified by their ability to form colonies in vitro. BEN expression is lost as progenitor cells proliferate and differentiate to develop mature colonies in the clonal assay. Mature myeloid cells, such as macrophages, granulocytes, thrombocytes, and erythrocytes do not express the BEN antigen. Taken together, these data demonstrated that BEN is a stage-specific rather than a lineage-specific differentiation antigen expressed by immature hemopoietic cells.  相似文献   

2.
Ghrelin is a peptide hormone that has been implicated in the regulation of food intake and energy homeostasis. Ghrelin is predominantly produced in the stomach, but is also expressed in many other tissues where its functions are not well characterized. In the rodent and human pancreas, ghrelin levels peak at late gestation and gradually decline postnatally. Several studies have suggested that ghrelin regulates beta cell function during embryonic development and in the adult. In addition, in a number of mouse models, ghrelin cells appear to replace insulin- and glucagon-producing cells in the islet. In this analysis, we investigated whether the absence or overexpression of ghrelin influenced the development and differentiation of the pancreatic islet during embryonic development. These studies revealed that ghrelin is dispensable for normal pancreas development during gestation. Conversely, we demonstrated that elevated ghrelin in the Nkx2.2 null islets is not responsible for the absence of insulin- and glucagon-producing cells. Finally, we have also determined that in the absence of insulin, ghrelin cells form in their normal numbers and ghrelin is expressed at wild type levels.  相似文献   

3.
Transforming growth factor-beta (TGF-beta) superfamily signaling has been implicated in many developmental processes, including pancreatic development. Previous studies are conflicting with regard to an exact role for TGF-beta signaling in various aspects of pancreatic organogenesis. Here we have investigated the role of TGF-beta isoform signaling in embryonic pancreas differentiation and lineage selection. The TGF-beta isoform receptors (RI, RII and ALK1) were localized mainly to both the pancreatic epithelium and mesenchyme at early stages of development, but then with increasing age localized to the pancreatic islets and ducts. To determine the specific role of TGF-beta isoforms, we functionally inactivated TGF-beta signaling at different points in the signaling cascade. Disruption of TGF-beta signaling at the receptor level using mice overexpressing the dominant-negative TGF-beta type II receptor showed an increase in endocrine precursors and proliferating endocrine cells, with an abnormal accumulation of endocrine cells around the developing ducts of mid-late stage embryonic pancreas. This pattern suggested that TGF-beta isoform signaling may suppress the origination of secondary transition endocrine cells from the ducts. Secondly, TGF-beta isoform ligand inhibition with neutralizing antibody in pancreatic organ culture also led to an increase in the number of endocrine-positive cells. Thirdly, hybrid mix-and-match in vitro recombinations of transgenic pancreatic mesenchyme and wild-type epithelium also led to increased endocrine cell differentiation, but with different patterns depending on the directionality of the epithelial-mesenchymal signaling. Together these results suggest that TGF-beta signaling is important for restraining the growth and differentiation of pancreatic epithelial cells, particularly away from the endocrine lineage. Inhibition of TGF-beta signaling in the embryonic period may thus allow pancreatic epithelial cells to progress towards the endocrine lineage unchecked, particularly as part of the secondary transition of pancreatic endocrine cell development. TGF-beta RII in the ducts and islets may normally serve to downregulate the production of beta cells from embryonic ducts.  相似文献   

4.
How organ size and form are controlled during development is a major question in biology. Blood vessels have been shown to be essential for early development of the liver and pancreas, and are fundamental to normal and pathological tissue growth. Here, we report that, surprisingly, non-nutritional signals from blood vessels act to restrain pancreas growth. Elimination of endothelial cells increases the size of embryonic pancreatic buds. Conversely, VEGF-induced hypervascularization decreases pancreas size. The growth phenotype results from vascular restriction of pancreatic tip cell formation, lateral branching and differentiation of the pancreatic epithelium into endocrine and acinar cells. The effects are seen both in vivo and ex vivo, indicating a perfusion-independent mechanism. Thus, the vasculature controls pancreas morphogenesis and growth by reducing branching and differentiation of primitive epithelial cells.  相似文献   

5.
Endocrine differentiation in the early embryonic pancreas is regulated by Notch signaling. Activated Notch signaling maintains pancreatic progenitor cells in an undifferentiated state, whereas suppression of Notch leads to endocrine cell differentiation. Yet it is not known what mechanism is employed to inactivate Notch in a correct number of precursor cells to balance progenitor proliferation and differentiation. We report that an established Notch modifier, Manic Fringe (Mfng), is expressed in the putative endocrine progenitors, but not in exocrine pancreatic tissues, during early islet differentiation. Using chicken embryonic endoderm as an assaying system, we found that ectopic Mfng expression is sufficient to induce endodermal cells to differentiate towards an endocrine fate. This endocrine-inducing activity depends on inactivation of Notch. Furthermore, ectopic Mfng expression induces the expression of basic helix-loop-helix gene, Ngn3, and two zinc finger genes, cMyt1 and cMyt3. These results suggest that Mfng-mediated repression of Notch signaling could serve as a trigger for endocrine islet differentiation.  相似文献   

6.
The role of the Notch signaling members Notch1, Notch2 and Rbpj in exocrine pancreatic development is not well defined. We therefore analyzed conditional pancreas-specific Rbpj and combined Notch1/Notch2 knockout mice using Ptf1a(+/Cre(ex1)) mice crossed with floxed Rbpj or Notch1/Notch2 mice. Mice were analyzed at different embryonic stages for pancreatic exocrine and endocrine development. The absence of Rbpj in pancreatic progenitor cells impaired exocrine pancreas development up to embryonic day 18.5 and led to premature differentiation of pancreatic progenitors into endocrine cells. In Rbpj-deficient pancreata, amylase-expressing acini and islets formed during late embryonic and postnatal development, suggesting an essential role of Rbpj in early but not late development. Contrary to this severe phenotype, the concomitant inactivation of Notch1 and Notch2 only moderately disturbed the proliferation of pancreatic epithelial cells during early embryonic development, and did not inhibit pancreatic development. Our results show that, in contrast to Rbpj, Notch1 and Notch2 are not essential for pancreatogenesis. These data favor a Notch-independent role of Rbpj in the development of the exocrine pancreas. Furthermore, our findings suggest that in late stages of pancreatic development exocrine cell differentiation and maintenance are independent of Rbpj.  相似文献   

7.
Embryonic Hedgehog signaling is essential for proper tissue morphogenesis and organ formation along the developing gastrointestinal tract. Hedgehog ligands are expressed throughout the endodermal epithelium at early embryonic stages but excluded from the region that will form the pancreas. Ectopic activation of Hedgehog signaling at the onset of pancreas development has been shown to inhibit organ morphogenesis. In contrast, Hedgehog signaling components are found within pancreatic tissue during subsequent stages of development as well as in the mature organ, indicating that a certain level of pathway activation is required for normal organ development and function. Here, we ectopically activate the Hedgehog pathway midway through pancreas development via expression of either Sonic (Shh) or Indian Hedgehog (Ihh) under control of the human Pax4-promoter. Similar pancreatic defects are observed in both Pax4-Shh and Pax4-Ihh transgenic lines, suggesting that regulation of the overall level of Hedgehog activity is critical for proper pancreas development. We also show that Hedgehog signaling controls mesenchymal vs. epithelial tissue differentiation and that pathway activation impairs formation of epithelial progenitors. Thus, tight control of Hedgehog pathway activity throughout embryonic development ensures proper pancreas organogenesis.  相似文献   

8.
9.
10.
The mammalian embryo represents a fundamental paradox in biology. Its location within the uterus, especially early during development when embryonic cardiovascular development and placental blood flow are not well-established, leads to an obligate hypoxic environment. Despite this hypoxia, the embryonic cells are able to undergo remarkable growth, morphogenesis, and differentiation. Recent evidence suggests that embryonic organ differentiation, including pancreatic β-cells, is tightly regulated by oxygen levels. Since a major determinant of oxygen tension in mammalian embryos after implantation is embryonic blood flow, here we used a novel survivable in utero intracardiac injection technique to deliver a vascular tracer to living mouse embryos. Once injected, the embryonic heart could be visualized to continue contracting normally, thereby distributing the tracer specifically only to those regions where embryonic blood was flowing. We found that the embryonic pancreas early in development shows a remarkable paucity of blood flow and that the presence of blood flow correlates with the differentiation state of the developing pancreatic epithelial cells in the region of the blood flow.  相似文献   

11.
The role of somites and notochords in neuroectoderm differentiation from the embryonic ectoderm and its subsequent patterning into regional compartments along rostro-caudal and dorso-ventral axes, especially in humans, remains elusive. Here, we demonstrate the co-culture effect of somites and notochords isolated from chicken embryos on the neuronal differentiation and regional identity of an adherent culture of human embryonic stem cells (hESCs). Notochord increased the efficiency and speed of neuronal induction, whereas somites had a weak neuronal inducing effect on hESCs. However, a synergistic effect was not observed when notochords and somites were used together. Moreover, in somite and notochord co-culture groups, hESCs-derived neuronal cells expressed HOXB4, OTX2, IRX3 and PAX6, indicative of dorsal hindbrain and ventral anterior identities, respectively. Our results reveal the influence of embryonic notochord and somite co-culture in providing neuronal induction as well as rostro-caudal and dorso-ventral regional identity of hESCs-derived neuronal cells. This study provides a model through which in vivo neuronal induction events may be imitated.  相似文献   

12.
13.
A monoclonal antibody, anti-BEN, initially characterized by its reactivity with an epitope present on the surface of avian bursa epithelial cells and neurons, also reacts with membrane molecules on some hemopoietic cells. In this study we examine BEN expression on lymphoid cells in thymus, spleen, and blood. We demonstrate that BEN is an activation antigen on mature T lymphocytes. It is not expressed on peripheral blood or splenic lymphocytes, but following mitogenic or allogeneic stimulation of blood lymphocytes it appears rapidly on a T cell subpopulation in parallel with the appearance of IL-2 receptors. BEN is also expressed on III-C5 cells, an avian IL-2-dependent permanent T cell line, and on immature CD4+CD8+ thymocytes. BEN is not expressed by resting or actively proliferating B cells. Biochemical analyses of the BEN protein on T lymphoblasts shows that the molecule is similar in size to the BEN molecules on bursa epithelial cells and on neurons. The physicochemical properties of the BEN protein and its tissue distribution differs from other known avian and mammalian T cell activation markers, differentiation antigens, and integrins. Thus BEN is a novel marker of activated T cells in birds.  相似文献   

14.
15.
Wnt signalling is involved in many developmental processes such as proliferation, differentiation, cell fate decisions, and morphogenesis. However, little is known about Wnt signalling during pancreas development. Multiple Wnt ligands and Frizzled receptors are expressed in the embryonic mouse pancreas, the surrounding mesenchyme, and have also been detected in the chicken endoderm during development. The aim of this study was to investigate the role of canonical Wnt signalling on endocrine cell development by use of the in ovo electroporation of the chicken endoderm. Overexpression with a constitutive active form of beta-catenin in combination with Ngn3 resulted in reduced numbers of glucagon cells. dnLEF-1 or naked-1 did not alter endocrine cell differentiation when co-expressed with Ngn3, but dnLEF-1 appeared to have some potential for inhibiting delamination of Ngn3 cells. In addition, neuronal beta-III-tubulin, which had previously been considered a specific marker for neuronal cells, was observed in the pancreas and was upregulated in the electroporated Ngn3 cells and thus may be a new endocrine marker in the chicken.  相似文献   

16.
17.
During pancreatic development, endocrine and exocrine cell types arise from common precursors in foregut endoderm. However, little information is available regarding regulation of pancreatic epithelial differentiation in specific precursor populations. We show that undifferentiated epithelial precursors in E10.5 mouse pancreas express nestin, an intermediate filament also expressed in neural stem cells. Within developing pancreatic epithelium, nestin is co-expressed with pdx1 and p48, but not ngn3. Epithelial nestin expression is extinguished upon differentiation of endocrine and exocrine cell types, and no nestin-positive epithelial cells are observed by E15.5. In E10.5 dorsal bud explants, activation of EGF signaling results in maintenance of undifferentiated nestin-positive precursors at the expense of differentiated acinar cells, suggesting a precursor/progeny relationship between these cell types. This relationship was confirmed by rigorous lineage tracing studies using nestin regulatory elements to drive Cre-mediated labeling of nestin-positive precursor cells and their progeny. These experiments demonstrate that a nestin promoter/enhancer element containing the second intron of the mouse nestin locus is active in undifferentiated E10.5 pancreatic epithelial cells, and that these nestin-positive precursors contribute to the generation of differentiated acinar cells. As in neural tissue, nestin-positive cells act as epithelial progenitors during pancreatic development, and may be regulated by EGF receptor activity.  相似文献   

18.
Nestin expression in pancreatic exocrine cell lineages   总被引:8,自引:0,他引:8  
Expression of nestin has been suggested to be a characteristic of pancreatic islet stem cells. To determine whether nestin is indeed expressed in such putative cells during embryonic development, or in the adult pancreas after injury, we performed a cell lineage analysis using two independent lines of transgenic mice encoding Cre recombinase under the control of rat nestin cis-regulatory sequences, each crossed with loxP-bearing R26R mice. F1 animals produced the reporter molecule beta-galactosidase only upon Cre-mediated recombination, thus solely in cells using (or having used) the transgenic nestin promoter. In early pancreatic primordia, beta-galactosidase was observed in mesenchymal and epithelial cells. At later developmental stages or in adults, vast clusters of acinar cells and few ductal cells were labeled, in addition to fibroblasts and vascular cells, but no endocrine cells were tagged by beta-galactosidase. This correlated with the transient expression, observed with an anti-nestin antibody, of endogenous nestin in about 5% of epithelial cells during development (whether in cord-forming arrangements or in nascent acini), and in vascular and mesenchymal structures. After partial pancreatectomy, there was a transient increase of the number of anti-nestin-labeled endothelial cells, but again, no endocrine cells bore beta-galactosidase. Together, these findings show that nestin is expressed in the pancreatic exocrine cell lineage, and suggest that consistent nestin expression is not a major feature of islet endocrine progenitor cells.  相似文献   

19.
The thymidine analog, 5-bromodeoxyuridine (BrdU), inhibits the differentiation of the acinar cells of the embryonic rat pancreas, while having little effect on the growth of the tissue. The BrdU-treated pancreas contains elevated alkaline phosphatase and carbonic anhydrase activities, and, unlike the normal pancreas, contains numerous extracellular fluid-filled vacuoles, surrounded by ductlike cells. Both alkaline phosphatase and carbonic anhydrase activities are located preferentially in the ductlike cells lining the vacuoles. The biochemical, morphological, and functional features of these epithelial cells are therefore characteristic of the normal pancreatic duct cell. Thus, in the exocrine pancreas, BrdU seems to alter the normal program of differentiation by favoring the functional duct cells while inhibiting the differentiation of acinar cells.  相似文献   

20.
The embryonic pancreatic epithelium, and later the ductal epithelium, is known to give rise to the endocrine and exocrine cells of the developing pancreas, but no specific surface marker for these cells has been identified. Here, we utilized Dolichos Biflorus Agglutinin (DBA) as a specific marker of these epithelial cells in developing mouse pancreas. From the results of an immunofluorescence study using fluorescein-DBA and pancreatic specific cell markers, we found that DBA detects specifically epithelial, but neither differentiating endocrine cells nor acinar cells. We further applied this marker in an immunomagnetic separation system (Dynabead system) to purify these putative multi-potential cells from a mixed developing pancreatic cell population. This procedure could be applied to study differentiation and cell lineage selections in the developing pancreas, and also may be applicable to selecting pancreatic precursor cells for potential cellular engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号