首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current study focuses on the molecular mechanisms responsible for actin assembly on a defined membrane surface: the phagosome. Mature phagosomes were surrounded by filamentous actin in vivo in two different cell types. Fluorescence microscopy was used to study in vitro actin nucleation/polymerization (assembly) on the surface of phagosomes isolated from J774 mouse macrophages. In order to prevent non-specific actin polymerization during the assay, fluorescent G-actin was mixed with thymosin beta4. The cytoplasmic side of phagosomes induced de novo assembly and barbed end growth of actin filaments. This activity varied cyclically with the maturation state of phagosomes, both in vivo and in vitro. Peripheral membrane proteins are crucial components of this actin assembly machinery, and we demonstrate a role for ezrin and/or moesin in this process. We propose that this actin assembly process facilitates phagosome/endosome aggregation prior to membrane fusion.  相似文献   

2.
Ena/VASP proteins are powerful actin polymerases that drive the processive elongation of actin filaments. Members of this protein family have been implicated in a variety of important cellular processes including axon guidance, cell migration and adhesion. However, the specific function of these proteins in macroendocytosis, comprising macropinocytosis and phagocytosis remain rather poorly understood. Here, we used the professional phagocyte Dictyostelium discoideum to address the function and dynamics of its only family member VASP in macroendocytosis. Confocal time-lapse imaging revealed that VASP localized prominently in a circumferential narrow band at the advancing rim of the phagocytic cup followed by its aperture-like convergence upon particle internalization. Loss of VASP resulted in substantial defects in both, macropinocytosis of bulk fluid and phagocytosis of yeast particles. Consistently, VASP-deficiency coincided with diminished speed of the protruding rim and an impaired internalization rate. Most intriguingly, after cup closure, VASP condensed at the distal side of internalized phagosomes and initiated localized de-novo actin assembly to propel the phagosome by an actin-rich comet deeper into the cell, resembling intracellular movement of rocketing Listeria cells. In line with these findings, travelled distance and speed of rocketing phagosomes in VASP-deficient cells were markedly impaired.  相似文献   

3.
Summary Although it is known that actin polymerizes rapidly at the plasma membrane during the ingestion phase of phagocytosis, not yet fully understood are the mechanisms by which actin is recruited to form a phagoeytic cup and subsequently is dissociated from the phagosome. The aim of this study was to identify actin-binding proteins that mediated actin filament dynamics during phagosome formation and processing. We report that profilins I and II, which promote filament assembly, and cofilin, which stimulates filament disassembly, were constituents of phagosomes isolated fromDictyostelium discoideum fed latex beads, and associated with actin. Biochemical analyses detected one isoform only of cofilin, which bound actin in unstimulated cells as well as in cells engaged in phagocytosis, subjected to various stress treatments, and through development. At membranes of young phagosomes, profilins I and II colocalized with monomeric actin labeled with fluorescent DNase I, and cofilin colocalized with filamentous actin labeled with rhodamine phalloidin. Both immunocytochemical and quantitative immunoblotting data indicated that the kinetic loss of profilins I, II, and cofilin of maturing phagosomes closely followed the falling levels of actin associated with the vesicles. As evidence of vesicle processing,D. discoideum crystal protein (an esterase) was recruited rapidly to phagosomes and its levels increased while those of actin, profilins I, II, and cofilin jointly decreased. The localization data and concurrent losses of profilins and cofilin with actin from phagosomes are consistent with the roles of these actin-binding proteins in filament dynamics and indicated that they were involved in regulating the assembly and disassembly of the actin coat of phagosomes.Abbreviations DNase deoxyribonuclease - FITC fluorescein isothiocyanate - NEpHGE nonequilibrium pH gradient gel electrophoresis - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

4.
Anti-inflammatory effects of phosphatidylcholine   总被引:3,自引:0,他引:3  
We recently showed that mucus from patients with ulcerative colitis, a chronic inflammatory disorder of the colon, is characterized by a low level of phosphatidylcholine (PC) while clinical studies reveal that therapeutic addition of PC using slow release preparations is beneficial. The positive role of PC in this disease is still elusive. Here we tested the hypothesis that exogenous application of PC has anti-inflammatory properties using three model systems. First, human Caco-2 cells were treated with tumor necrosis factor-alpha (TNF-alpha) to induce a pro-inflammatory response via activation of NF-kappaB. Second, latex bead phagosomes were analyzed for their ability to assemble actin in vitro, a process linked to pro-inflammatory signaling and correlating with the growth versus killing of mycobacteria in macrophages. The third system used was the rapid assembly of plasma membrane actin in macrophages in response to sphingosine 1-phosphate. TNF-alpha induced a pro-inflammatory response in Caco-2 cells, including 1) assembly of plasma membrane actin; 2) activation of both MAPKs ERK and p38; 3) transport of NF-kappaB subunits to the nucleus; and 4) subsequent up-regulation of the synthesis of pro-inflammatory gene products. Exogenous addition of most PCs tested significantly inhibited these processes. Other phospholipids like sphingomyelin or phosphatidylethanolamine showed no effects in these assays. PC also inhibited latex bead phagosome actin assembly, the killing of Mycobacterium tuberculosis in macrophages, and the sphingosine 1-phosphate-induced actin assembly in macrophages. TNF-alpha induces the activation of signaling molecules and the reorganization of the actin cytoskeleton in human intestinal cells. Exogenous application of PC blocks pro-inflammatory signaling in Caco-2 cells, in phagosomes in vitro and facilitates intracellular survival of mycobacteria. We provide further evidence that actin assembly by membranes is part of the pro-inflammatory response. Collectively, these results provide a molecular foundation for the clinical studies showing a beneficial effect of PC therapy in ulcerative colitis.  相似文献   

5.
Actin is implicated in membrane fusion, but the precise mechanisms remain unclear. We showed earlier that membrane organelles catalyze the de novo assembly of F-actin that then facilitates the fusion between latex bead phagosomes and a mixture of early and late endocytic organelles. Here, we correlated the polymerization and organization of F-actin with phagosome and endocytic organelle fusion processes in vitro by using biochemistry and light and electron microscopy. When membrane organelles and cytosol were incubated at 37 degrees C with ATP, cytosolic actin polymerized rapidly and became organized into bundles and networks adjacent to membrane organelles. By 30-min incubation, a gel-like state was formed with little further polymerization of actin thereafter. Also during this time, the bulk of in vitro fusion events occurred between phagosomes/endocytic organelles. The fusion between latex bead phagosomes and late endocytic organelles, or between late endocytic organelles themselves was facilitated by actin, but we failed to detect any effect of perturbing F-actin polymerization on early endosome fusion. Consistent with this, late endosomes, like phagosomes, could nucleate F-actin, whereas early endosomes could not. We propose that actin assembled by phagosomes or late endocytic organelles can provide tracks for fusion-partner organelles to move vectorially toward them, via membrane-bound myosins, to facilitate fusion.  相似文献   

6.
Phagosome maturation is defined as the process by which phagosomes fuse sequentially with endosomes and lysosomes to acquire an acidic pH and hydrolases that degrade ingested particles. While the essential role of actin cytoskeleton remodeling during particle internalization is well established, its role during the later stages of phagosome maturation remains largely unknown. We have previously shown that purified mature phagosomes assemble F-actin at their membrane, and that the ezrin-radixin-moesin (ERM) proteins ezrin and moesin participate in this process. Moreover, we provided evidence that actin assembly on purified phagosomes stimulates their fusion with late endocytic compartments in vitro. In this study, we further investigated the role of ezrin in phagosome maturation. We engineered a structurally open form of ezrin and demonstrated that ezrin binds directly to the actin assembly promoting factor N-WASP (Neural Wiskott-Aldrich Syndrome Protein) by its FERM domain. Using a cell-free system, we found that ezrin stimulates F-actin assembly on purified phagosomes by recruiting the N-WASP-Arp2/3 machinery. Accordingly, we showed that the down-regulation of ezrin activity in macrophages by a dominant-negative approach caused reduced F-actin accumulation on maturing phagosomes. Furthermore, using fluorescence and electron microscopy, we found that ezrin is required for the efficient fusion between phagosomes and lysosomes. Live-cell imaging analysis supported the notion that ezrin is necessary for the fusogenic process itself, promoting the transfer of the lysosome content into the phagosomal lumen.  相似文献   

7.
Pathogenic mycobacteria such as Mycobacterium tuberculosis and Mycobacterium avium facilitate disease by surviving intracellularly within a potentially hostile environment: the macrophage phagosome. They inhibit phagosome maturation processes, including fusion with lysosomes, acidification and, as shown here, membrane actin assembly. An in vitro assay developed for latex bead phagosomes (LBPs) provided insights into membrane signalling events that regulate phagosome actin assembly, a process linked to membrane fusion. Different lipids were found to stimulate or inhibit actin assembly by LBPs and mycobacterial phagosomes in vitro. In addition, selected lipids activated actin assembly and phagosome maturation in infected macrophages, resulting in a significant killing of M. tuberculosis and M. avium. In contrast, the polyunsaturated sigma-3 lipids behaved differently and stimulated pathogen growth. Thus, lipids can be involved in both stimulatory and inhibitory signalling networks in the phagosomal membrane.  相似文献   

8.
BACKGROUND: Actin assembly on biological membranes is a poorly understood process. We have previously shown that phagosomal membranes could induce actin assembly in the presence of thymosin beta4 (an actin sequestering protein that inhibits nonspecific nucleation), via the barbed ends of actin filaments. METHODS: Here, we have developed an in vitro system based on fluorescein-labeled G (monomeric) actin and flow cytometry analysis, which allowed us to quantify de novo actin assembly on the cytoplasmic side of purified phagosomes. To standardize the system, we also used latex beads covalently coupled with polylysine, which efficiently promote actin nucleation. RESULTS: Flow cytometry analysis showed that the percentage of polylysine beads positive for F-actin filaments increased in a time- and G-actin concentration-dependent manner. Incubation of phagosomes with reagents affecting actin dynamics allowed us to extend our previous data showing that the phagosomal membranes assemble actin filaments de novo. Finally, our results pin-point a potential role for gelsolin as a positive regulator of actin assembly on the phagosomal membrane. CONCLUSIONS: We propose that our system could facilitate the development of other in vitro assays for the analysis of actin assembly and its links to signaling in cells.  相似文献   

9.
We review herein the definition of the NADPH oxidase-activating site in human neutrophils and eosinophils, together with the new biochemical findings of the assembly of NADPH oxidase components and the signal transduction for the activation of NADPH oxidase. The activation of this enzyme is associated with multiple interrelated signaling pathways. Upon cell stimulation, the second messengers act on the assembly of NADPH oxidase components. The cytosolic components are first phosphorylated, and then associated with the membrane components. Small GTP-binding proteins and cytoskeletal components also participate in the activation of the NADPH oxidase. The cytochemical findings demonstrate that the superoxide generated by NADPH oxidase activity is initially localized in distinct types of intracellular granules, and not at the plasma membrane as previously believed. Thus, the assembly of NADPH oxidase components possibly occurs at the limiting membrane of the intracellular compartments. The oxidant-producing compartments mobilize and become associated with the plasma membrane upon cell stimulation with soluble stimulants, or fuse to phagosomes upon stimulation with particulate stimulants. Accordingly, superoxide is released to the extracellular space and into phagosomes in proportion to the oxidant-producing intracellular granule association with the plasma membrane and with the phagosomal membrane, respectively.  相似文献   

10.
Li N  Mak A  Richards DP  Naber C  Keller BO  Li L  Shaw AR 《Proteomics》2003,3(4):536-548
Lipid rafts are membrane microdomains of unique lipid composition that segregate proteins with poorly understood consequences for membrane organization. Identification of raft associated proteins could therefore provide novel insight into raft-dependent functions. Monocytes process antigens for presentation to T cells by ingesting pathogens into calcium-dependent plasma membrane invaginations called "phagosomes" which develop by sequential fusion with the endoplasmic reticulum, early and late endosomes. We investigated the protein composition of Triton X-100 insoluble low density membranes of the monocyte cell-line THP-1 by matrix-assisted laser desorption/ionization-time of flight and tandem mass spectrometry. The ganglioside GM1 colocalized on the plasma membrane with the raft markers flotillin 1 and 2, which were enriched in low buoyant density fractions containing 52 identifiable proteins, 28 of which have not been reported in rafts, and nine of which are associated with the endoplasmic reticulum (ER). Remarkably, 27 of the 52 proteins are components of phagosomes, including the ER protein calnexin which we demonstrate is phosphorylated on serine 562, a switch controlling calcium homeostasis. The presence of the early and late endosome trafficking proteins Rab-1, and Rab-7 together with the late endosome protein LIMPII, indicate lipid rafts are present throughout endosome maturation. Identification of vacuolar ATP synthase, and synaptosomal-associated protein-23, proteins implicated in membrane fusion, together with the cytoskeletal proteins actin, alpha-actinin, and vimentin, and Rac 1, 2, and 3, regulators of cytoskeletal assembly, indicate monocyte lipid rafts contain the machinery to direct vesicular fusion and actin based vesicular migration throughout phagosome development.  相似文献   

11.
Phagosomal Proteins of Dictyostelium discoideum   总被引:1,自引:0,他引:1  
ABSTRACT. In recognizing food particles, Dictyostelium cell-surface molecules initiate cytoskeletal rearrangements that result in phagosome formation. After feeding D. discoideum cells latex beads, early phagosomes were isolated on sucrose step gradietns. Protein analyses of these vesicles showed that they contained glycoproteins and surface-labeled species corresponding to integral plasma membrane proteins. Cytoskeletal proteins also were associated with phagosomes, including myosin II, actin and a 30 kDa-actin bundling protein. As seen by the acridine orange fluorescence of vesicles containing bacteria, phagosomes were acidified rapidly by a vacuolar H+-ATPase that was detected by immunoblotting. Except for the loss of cytoskeletal proteins, few other changes over time were noted in the protein profiles of phagosomes, suggesting that phagosome maturation was incomplete. The indigestibility of the beads possibly inhibited further endocytic processing, which has been observed by others. Since nascent phagosomes contained molecules of both the cytoskeleton and plasma membrane, they will be useful in studies aimed at identifying specific protein associations occurring between membrane proteins and the cytoskeleton during phagocytosis.  相似文献   

12.
Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes   总被引:1,自引:0,他引:1  
Flotillin-1 was recently shown to be enriched on detergent-resistant domains of the plasma membrane called lipid rafts. These rafts, enriched in sphingolipids and cholesterol, sequester certain proteins while excluding others. Lipid rafts have been implicated in numerous cellular processes including signal transduction, membrane trafficking, and molecular sorting. In this study, we demonstrate both morphologically and biochemically that lipid rafts are present on phagosomes. These structures are enriched in flotillin-1 and devoid of the main phagosomes membrane protein lysosomal-associated membrane protein (LAMP1). The flotillin-1 present on phagosomes does not originate from the plasma membrane during phagocytosis but accumulates gradually on maturing phagosomes. Treatment with bafilomycin A1, a compound that inhibits the proton pump ATPase and prevents the fusion of phagosomes with late endocytic organelles, prevents the acquisition of flotillin-1 by phagosomes, indicating that this protein might be recruited on phagosomes from endosomal organelles. A proteomic characterization of the lipid rafts of phagosomes indicates that actin, the alpha- and beta-subunits of heterotrimeric G proteins, as well as subunits of the proton pump V-ATPase are among the constituents of these domains. Remarkably, the intracellular parasite Leishmania donovani can actively inhibit the acquisition of flotillin-1-enriched lipid rafts by phagosomes and the maturation of these organelles. These results indicate that specialized functions required for phagolysosome biogenesis may occur at focal points on the phagosome membrane, and therefore represent a potential target of intracellular pathogens.  相似文献   

13.
Actin assembly on membrane surfaces is an elusive process in which several phosphoinositides (PIPs) have been implicated. We have reconstituted actin assembly using a defined membrane surface, the latex bead phagosome (LBP), and shown that the PI(4,5)P(2)-binding proteins ezrin and/or moesin were essential for this process (). Here, we provide several lines of evidence that both preexisting and newly synthesized PI(4,5)P(2), and probably PI(4)P, are essential for phagosomal actin assembly; only these PIPs were routinely synthesized from ATP during in vitro actin assembly. Treatment of LBP with phospholipase C or with adenosine, an inhibitor of type II PI 4-kinase, as well as preincubation with anti-PI(4)P or anti-PI(4,5)P(2) antibodies all inhibited this process. Incorporation of extra PI(4)P or PI(4,5)P(2) into the LBP membrane led to a fivefold increase in the number of phagosomes that assemble actin. An ezrin mutant mutated in the PI(4,5)P(2)-binding sites was less efficient in binding to LBPs and in reconstituting actin assembly than wild-type ezrin. Our data show that PI 4- and PI 5-kinase, and under some conditions also PI 3-kinase, activities are present on LBPs and can be activated by ATP, even in the absence of GTP or cytosolic components. However, PI 3-kinase activity is not required for actin assembly, because the process was not affected by PI 3-kinase inhibitors. We suggest that the ezrin-dependent actin assembly on the LBP membrane may require active turnover of D4 and D5 PIPs on the organelle membrane.  相似文献   

14.
The growth-arrest-specific gene, Gas7, is required for neurite outgrowth in cerebellar neurons. Here we report that Gas7 can induce the formation of extended cellular processes in NIH3T3 cells by interacting with actin and mediating reorganization of microfilaments. The Gas 7 protein, which increased markedly during growth arrest of NIH3T3 cells and persisted transiently at high levels upon reentry of cells into the cell cycle, localized near the plasma membrane and selectively colocalized with microfilaments in membrane ruffles. Process extensions induced by ectopic overexpression of Gas7 were blocked by the actin-depolymerizing agent cytochalasin D, suggesting that membrane extensions produced by Gas7 require actin polymerization. Association of endogenous Gas7 protein with microfilaments was verified by F-actin affinity chromatography; direct binding of purified His-Gas7 to actin also was demonstrated and shown to be mediated by the Gas7 C-terminal domain. Similarly, localization of Gas7 in membrane ruffles was mediated by the C-terminal domain, although neither this region nor the N-terminal domain was individually sufficient to induce process formation. Biochemical studies and electron microscopy showed that both full-length Gas7 protein and its C-terminal region can promote actin assembly as well as the crosslinking of actin filaments. We propose that Gas7 localized near the plasma membrane induces the assembly of actin and the membrane outgrowth.  相似文献   

15.
Regulated actin filament assembly is critical for eukaryotic cell physiology. Actin filaments are polar structures, and those with free high affinity or barbed ends are crucial for actin dynamics and cell motility. Actin filament barbed-end-capping proteins inhibit filament elongation after binding, and their regulated disassociation is proposed to provide a source of free filament ends to drive processes dependent on actin polymerization. To examine whether dissociation of actin filament capping proteins occurs with the correct spatio-temporal constraints to contribute to regulated actin assembly in live cells, I measured the dissociation of an actin capping protein, gelsolin, from actin in cells using a variation of fluorescence resonance energy transfer (FRET). Uncapping was found to occur in cells at sites of active actin assembly, including protruding lamellae and rocketing vesicles, with the correct spatio-temporal properties to provide sites of actin filament polymerization during protrusion. These observations are consistent with models where uncapping of existing filaments provides sites of actin filament elongation.  相似文献   

16.
The physiologic and pathologic functions of sphingosine kinase (SK) require translocation to specific membrane compartments. We tested the hypothesis that interactions with actin filaments regulate the localization of SK1 to membrane surfaces, including the plasma membrane and phagosome. Macrophage activation is accompanied by a marked increase in association of SK1 with actin filaments. Catalytically-inactive (CI)- and phosphorylation-defective (PD)-SK1 mutants exhibited reductions in plasma membrane translocation, colocalization with cortical actin filaments, membrane ruffling, and lamellipodia formation, compared with wild-type (WT)-SK1. However, translocation of CI- and PD-SK1 to phagosomes were equivalent to WT-SK1. SK1 exhibited constitutive- and stimulus-enhanced association with actin filaments and F-actin-enriched membrane fractions in both intact macrophages and a novel in vitro assay. In contrast, SK1 bound G-actin only under stimulated conditions. Actin inhibitors disrupted SK1 localization and modulated its activity. Conversely, reduction of SK1 levels or activity via RNA interference or specific chemical inhibition resulted in dysregulation of actin filaments. Thus, the localization and activity of SK1 are coordinately regulated with actin dynamics during macrophage activation.  相似文献   

17.
To study molecular motion and function of membrane phospholipids, we have developed various probes which bind specifically to certain phospholipids. Using a novel peptide probe, RoO9-0198, which binds specifically to phosphatidylethanolamine (PE) in biological membranes, we have analyzed the cell surface movement of PE in dividing CHO cells. We found that PE was exposed on the cell surface specifically at the cleavage furrow during the late telophase of cytokinesis. PE was exposed on the cell surface only during the late telophase and no alteration in the distribution of the plasma membranebound peptide was observed during the cytokinesis, suggesting that the surface exposure of PE reflects the enhanced transbilayer movement of PE at the cleavage furrow. Furthermore, cell surface immobilization of PE induced by adding of the cyclic peptide coupled with streptavidin to prometaphase cells effectively blocked the cytokinesis at late telophase. The peptide-streptavidin complex bound specifically to cleavage furrow and inhibited both actin filament disassembly at cleavage furrow and subsequent plasma membrane fusion. Binding of the peptide complex to interphase cells also induced immediate disassembly of stress fibers followed by assembly of cortical actin filaments to the local area of plasma membrane where the peptide complex bound. The cytoskeletal reorganizations caused by the peptide complex were fully reversible; removal of the surface-bound peptide complex by incubating with PE-containing liposome caused gradual disassembly of the cortical actin filaments and subsequent formation of stress fibers. These observations suggest that the redistribution of plasma membrane phospholipids act as a regulator of actin cytoskeleton organization and may play a crucial role in mediating a coordinate movement between plasma membrane and actin cytoskeleton to achieve successful cell division.  相似文献   

18.
Clustering of macrophage Fc gamma receptors by multimeric immunoglobulin complexes leads to their internalization. Formation of small aggregates leads to endocytosis, whereas large particulate complexes induce phagocytosis. In RAW-264.7 macrophages, Fc gamma receptor endocytosis was found to be dependent on clathrin and dynamin and insensitive to cytochalasin. Clathrin also associates with nascent phagosomes, and earlier observations suggested that it plays an essential role in phagosome formation. However, we find that phagocytosis of IgG-coated large (> or =3 microm) particles was unaffected by inhibition of dynamin or by reducing the expression of clathrin using antisense mRNA but was eliminated by cytochalasin, implying a distinct mechanism dependent on actin assembly. The uptake of smaller particles (< or =1 microm) was only partially blocked by cytochalasin. Remarkably, the cytochalasin-resistant component was also insensitive to dominant-negative dynamin I and to clathrin antisense mRNA, implying the existence of a third internalization mechanism, independent of actin, dynamin, and clathrin. The uptake of small particles occurred by a process distinct from fluid phase pinocytosis, because it was not inhibited by dominant-negative Rab5. The insensitivity of phagocytosis to dominant-negative dynamin I enabled us to test the role of dynamin in phagosomal maturation. Although internalization of receptors from the plasma membrane was virtually eliminated by the K44A and S45N mutants of dynamin I, clearance of transferrin receptors and of CD18 from maturing phagosomes was unaffected by these mutants. This implies that removal of receptors from the phagosomal membrane occurs by a mechanism that is different from the one mediating internalization of the same receptors at the plasma membrane. These results imply that, contrary to prevailing notions, normal dynamin and clathrin function is not required for phagocytosis and reveal the existence of a component of phagocytosis that is independent of actin and Rab5.  相似文献   

19.
Clathrin-mediated endocytosis (CME) robustness under elevated membrane tension is maintained by actin assembly–mediated force generation. However, whether more actin assembles at endocytic sites in response to increased load has not previously been investigated. Here actin network ultrastructure at CME sites was examined under low and high membrane tension. Actin and N-WASP spatial organization indicate that actin polymerization initiates at the base of clathrin-coated pits and that the network then grows away from the plasma membrane. Actin network height at individual CME sites was not coupled to coat shape, raising the possibility that local differences in mechanical load feed back on assembly. By manipulating membrane tension and Arp2/3 complex activity, we tested the hypothesis that actin assembly at CME sites increases in response to elevated load. Indeed, in response to elevated membrane tension, actin grew higher, resulting in greater coverage of the clathrin coat, and CME slowed. When membrane tension was elevated and the Arp2/3 complex was inhibited, shallow clathrin-coated pits accumulated, indicating that this adaptive mechanism is especially crucial for coat curvature generation. We propose that actin assembly increases in response to increased load to ensure CME robustness over a range of plasma membrane tensions.  相似文献   

20.
The shape changes and membrane ruffling that accompany neutrophil activation are dependent on the assembly and reorganization of the actin cytoskeleton, the molecular basis of which remains to be clarified. A role of protein kinase C (PKC) has been postulated because neutrophil activation, with the attendant shape and membrane ruffling changes, can be initiated by phorbol esters, known activators of PKC. It has become apparent, however, that multiple isoforms of PKC with differing substrate specificities exist. To reassess the role of PKC in cytoskeletal reorganization, we compared the effects of diacylglycerol analogs and of PKC antagonists on kinase activity and on actin assembly in human neutrophils. Ruffling of the plasma membrane was assessed by scanning EM, and spatial redistribution of filamentous (F)-actin was assessed by scanning confocal microscopy. Staining with NBD-phallacidin and incorporation of actin into the Triton X-100-insoluble ("cytoskeletal") fraction were used to quantify the formation of (F)-actin. [32P]ATP was used to detect protein phosphorylation in electroporated cells. Exposure of neutrophils to 4 beta-PMA (an activator of PKC) induced protein phosphorylation, membrane ruffling, and assembly and reorganization of the actin cytoskeleton, whereas the 4a-isomer, which is inactive towards PKC, failed to produce any of these changes. Moreover, 1,2-dioctanoylglycerol, mezerein, and 3-(N-acetylamino)-5-(N-decyl-N-methylamino)-benzyl alcohol, which are nonphorbol activators of PKC, also promoted actin assembly. Although these effects were consistent with a role of PKC, the following observations suggested that stimulation of conventional isoforms of the kinase were not directly responsible for actin assembly: (a) Okadaic acid, an inhibitor of phosphatases 1 and 2A, potentiated PMA-induced protein phosphorylation, but not actin assembly; and (b) PMA-induced actin assembly and membrane ruffling were not prevented by the conventional PKC inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, staurosporine, calphostin C, or sphingosine at concentrations that precluded PMA-induced protein phosphorylation and superoxide production. On the other hand, PMA-induced actin assembly was inhibited by long-chain fatty acid coenzyme A esters, known inhibitors of nuclear PKC (nPKC). We conclude that PMA-induced actin assembly is unlikely to be mediated by the conventional isoforms of PKC, but may be mediated by novel isoforms of the kinase such as nPKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号