首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombination experiments using radioactive mitochondria and mitoplasts, and nonradioactive lysosomes or digitonin-soluble fraction of mitochondria, show equal rates of proteolysis and of inactivation of carbamyl phosphate synthetase; the amount of lysosomal protein was equal in both cases on the basis of N-acetyl-beta-glucosaminidase activity. Therefore, lysosomes seem to be responsible for all the proteolytic activity exhibited by the digitonin soluble fraction of mitochondrial preparations. Since this fraction contains ca. 90% of the proteolytic activity present in mitochondrial preparations, most of the proteolysis can be attributed to lysosomal contamination. These findings and stability characteristics "in vitro" and "in vivo" of some matrix enzymes are presented and discussed in relation to protein turnover.  相似文献   

2.
Summary The removal of the outer mitochondrial membrane and hence of constituents of the intermembrane space in rat-liver mitochondria using digitonin showed that phosphate-dependent glutaminase, alanine and aspartate aminotransferase were localized in the mitoplasts. Further fractionation of mitoplasts following their sonication resulted in 90% of glutaminase, 98% of alanine aminotransferase and 48% of aspartate aminotransferase being recovered in the soluble fraction while the remainder of each enzyme was recovered in the sonicated vesicles fraction. These results indicated that glutaminase and alanine aminotransferase were soluble matrix enzymes, the little of each enzyme recovered in the sonicated vesicles fraction being probably due to entrapment in the vesicles. Aspartate aminotransferase had dual localization, in the inner membrane and matrix with the high specific activity in sonicated vesicles confirming its association with the membrane. Activation experiments suggested that the membrane-bound enzyme was localized on the inner side of the inner mitochondrial membrane.  相似文献   

3.
Enzyme distribution in potato mitochondria was investigatedby selectively disrupting the outer and inner membranes withdigitonin. Antimycin-insensitive NADH-cytochrome c reductase,an outer membrane marker, was released at low digitonin concentrations(0.1 mg mg–1 mitochondrial protein). Soluble matrix enzymes,fumarase and malate dehydrogenase were released at 0.3–0.4mg digitonin mg–1 protein, as the inner membrane ruptured.Very little (about 10%) cytochrome oxidase activity was released,even at higher digitonin concentrations, in accord with thisenzyme being an integral inner membrane protein. By this criterionadenylate kinase is also firmly bound to the inner membrane.Evidence indicates that it faces the intermembrane space. Malic enzyme activity was released by the same digitonin concentrationthat released fumarase and malate dehydrogenase, indicatingthat malic enzyme is a soluble matrix enzyme. No activity wasreleased at low digitonin concentrations which selectively breakthe outer membrane, showing that malic enzyme is not presentin the intermembrane space. Considerable catalase activity (20—40 µmol O2 min–1mg–1 protein) was associated with washed mitochondrialpreparations, but 95% of this was lost upon purification ofmitochondria. The remaining activity was firmly bound to themitochondrial membranes.  相似文献   

4.
Rat liver mitochondrial fractions corresponding to four morphological structures (matrix, inner membrane, intermembrane space and outer membrane) contain proteinases that cleave casein components at different rates. Proteinases of the intermembrane space preferentially cleave kappa-casein, whereas the proteinases of the outer membrane, inner membrane and matrix fractions degrade alpha S1-casein more rapidly. Electrophoretic separation of the degradation products of alpha S1-casein and kappa-casein in polyacrylamide gels shows that different polypeptides are produced when the substrate is degraded by the matrix, by both membranes and by the intermembrane-space fraction. Some of the degradation products resulting from incubation of the caseins with the mitochondrial fractions are probably the result of digestion by contaminating lysosomal proteinase(s). The matrix has a high peptidase activity, since glucagon, a small peptide, is very rapidly degraded by this fraction. These observations strongly suggest that distinct proteinases, with different specificities, are associated respectively with the intermembrane space and with both membrane fractions.  相似文献   

5.
2',3'-Cyclic nucleotide 3'-phosphohydrolase (nucleoside-2':3'-cyclic-phosphate 2'-nucleotidohydrolase, EC 3.1.4.37) activity has been demonstrated in rat liver mitochondria. The enzyme was localized in both the outer and inner mitochondrial membranes but was absent from the intermembrane space and matrix. The mitochondrial (cyclic nucleotide) phosphohydrolase was activated by freezing and thawing and by treatment with digitonin or detergents. It is suggested that (cyclic nucleotide) phosphohydrolase is an integral membrane protein which is buried to a significant degree within the membrane. Atractyloside was found to be a noncompetitive inhibitor of the enzyme both in intact mitochondria and in preparations of the mitochondrial membranes. The enzyme substrate, 2',3'-cyclic adenosine monophosphate, had no effect on the oxidation of exogenous beta-hydroxybutyrate or succinate by intact mitochondria. These findings suggest that 2',3'-cyclic nucleotide 3'phosphohydrolase is more widely distributed than was previously thought and that the enzyme may play a fundamental role in membranes, independent of their specialized structure or functions.  相似文献   

6.
2′,3′-Cyclic nucleotide 3′-phosphohydrolase (nucleoside-2′:3′-cyclic-phosphate 2′-nucleotidohydrolase, EC 3.1.4.37) activity has been demonstrated in rat liver mitochondria. The enzyme was localized in both the outer and inner mitochondrial membranes but was absent from the intermembrane space and matrix. The mitochondrial (cyclic nucleotide) phosphohydrolase was activated by freezing and thawing and by treatment with digitonin or detergents. It is suggested that (cyclic nucleotide) phosphohydrolase is an integral membrane protein which is buried to a significant degree within the membrane. Atractyloside was found to be a noncompetitive inhibitor of the enzyme both in intact mitochondria and in preparations of the mitochondrial membranes. The enzyme substrate, 2′,3′-cyclic adenosine monophosphate, had no effect on the oxidation of exogenous β-hydroxybutyrate or succinate by intact mitochondria. These findings suggest that 2′,3′-cyclic nucleotide 3′phosphohydrolase is more widely distributed than was previously thought and that the enzyme may play a fundamental role in membranes, independent of their specialized structure or functions.  相似文献   

7.
The release of carnitine palmitoyltransferase (CPT) activity from rat liver mitochondria by increasing concentrations of digitonin was studied for mitochondrial preparations from fed, 48 h-starved and diabetic animals. A bimodal release of activity was observed only for mitochondria isolated from starved and, to a lesser degree, from diabetic rats, and it appeared to result primarily from the enhanced release of approx. 40% and 60%, respectively, of the total CPT activity. This change in the pattern of release was specific to CPT among the marker enzymes studied. For all three types of mitochondria there was no substantial release of CPT concurrently with that of the marker enzyme for the soluble intermembrane space, adenylate kinase. These results illustrate that the bimodal pattern of release of CPT reported previously for mitochondria from starved rats [Bergstrom & Reitz (1980) Arch. Biochem. Biophys. 204, 71-79] is not an immutable consequence of the localization of CPT activity on either side of the mitochondrial inner membrane. Sequential loss of CPT I (i.e. the overt form) from the mitochondrial inner membrane did not affect the concentration of malonyl-CoA required to effect fractional inhibition of the CPT I that remained associated with the mitochondria. The results are discussed in relation to the possibility that altered enzyme-membrane interactions may account for some of the altered regulatory properties of CPT I in liver mitochondria of animals in different physiological states.  相似文献   

8.
The structural changes accompanying digitonin-induced release of enzymes and metabolites from isolated hepatocytes have been studied by scanning and transmission electron microscopy. In the initial phase, characterized by total release of the cytosolic marker enzyme, lactate dehydrogenase, the plasma membrane was immediately damaged, rapidly followed by extensive damage to the endoplasmic reticulum. The shape of the cell, however, was maintained, and the mitochondria and nucleus remained tightly held together by the cytoskeleton. Mitochondria remained intact initially, whereas the cytosol became less electron dense and the nuclear chromatin was more dispersed. An intermediate phase was characterized by total release of adenylate kinase and most of the glucose-6-phosphatase, marker enzymes for the mitochondrial intermembrane space and the endoplasmic reticulum, respectively. The outer mitochondrial membrane was ruptured, but mitochondria maintained their normal matrix electron density. In the final phase, characterized by the beginning of citrate synthase release from the mitochondrial matrix space, the mitochondria became swollen, and only the nucleus, inner and outer mitochondrial membranes, and the cytoskeleton could be clearly distinguished. Although the plasma membrane could not be readily discerned in electron micrographs after the initial phase, the plasma membrane marker enzyme 5′-nucleotidase remained associated with digitonin-treated hepatocytes. Acetyl-CoA carboxylase was released much more slowly than lactate dehydrogenase, indicating some severe restriction on its release. The release of acetyl-CoA carboxylase closely paralleled the release of glucose-6-phosphatase. The controlled exposure of hepatocytes to digitonin, therefore, leads to the sequential release of soluble, compartmentalized cellular components and some membrane-bound components, but the mitochondrial membrane, cytoskeleton and the nucleoskeleton survive even long-term digitonin treatment.  相似文献   

9.
Treatment of rat liver mitochondria with digitonin followed by differential centrifugation was used to resolve the intramitochondrial localization of both soluble and particulate enzymes. Rat liver mitochondria were separated into three fractions: inner membrane plus matrix, outer membrane, and a soluble fraction containing enzymes localized between the membranes plus some solublized outer membrane. Monoamine oxidase, kynurenine hydroxylase, and rotenone-insensitive NADH-cytochrome c reductase were found primarily in the outer membrane fraction. Succinate-cytochrome c reductase, succinate dehydrogenase, cytochrome oxidase, β-hydroxybutyrate dehydrogenase, α-ketoglutarate dehydrogenase, lipoamide dehydrogenase, NAD- and NADH-isocitrate dehydrogenase, glutamate dehydrogenase, aspartate aminotransferase, and ornithine transcarbamoylase were found in the inner membrane-matrix fraction. Nucleoside diphosphokinase was found in both the outer membrane and soluble fractions; this suggests a dual localization. Adenylate kinase was found entirely in the soluble fraction and was released at a lower digitonin concentration than was the outer membrane; this suggests that this enzyme is localized between the two membranes. The inner membrane-matrix fraction was separated into inner membrane and matrix by treatment with the nonionic detergent Lubrol, and this separation was used as a basis for calculating the relative protein content of the mitochondrial components. The inner membrane-matrix fraction retained a high degree of morphological and biochemical integrity and exhibited a high respiratory rate and respiratory control when assayed in a sucrose-mannitol medium containing EDTA.  相似文献   

10.
Structural changes of isolated hepatocytes during treatment with digitonin   总被引:2,自引:0,他引:2  
The structural changes accompanying digitonin-induced release of enzymes and metabolites from isolated hepatocytes have been studied by scanning and transmission electron microscopy. In the initial phase, characterized by total release of the cytosolic marker enzyme, lactate dehydrogenase, the plasma membrane was immediately damaged, rapidly followed by extensive damage to the endoplasmic reticulum. The shape of the cell, however, was maintained, and the mitochondria and nucleus remained tightly held together by the cytoskeleton. Mitochondria remained intact initially, whereas the cytosol became less electron dense and the nuclear chromatin was more dispersed. An intermediate phase was characterized by total release of adenylate kinase and most of the glucose-6-phosphatase, marker enzymes for the mitochondrial intermembrane space and the endoplasmic reticulum, respectively. The outer mitochondrial membrane was ruptured, but mitochondria maintained their normal matrix electron density. In the final phase, characterized by the beginning of citrate synthase release from the mitochondrial matrix space, the mitochondria became swollen, and only the nucleus, inner and outer mitochondrial membranes, and the cytoskeleton could be clearly distinguished. Although the plasma membrane could not be readily discerned in electron micrographs after the initial phase, the plasma membrane marker enzyme 5'-nucleotidase remained associated with digitonin-treated hepatocytes. Acetyl-CoA carboxylase was released much more slowly than lactate dehydrogenase, indicating some severe restriction on its release. The release of acetyl-CoA carboxylase closely paralleled the release of glucose-6-phosphatase. The controlled exposure of hepatocytes to digitonin, therefore, leads to the sequential release of soluble, compartmentalized cellular components and some membrane-bound components, but the mitochondrial membrane, cytoskeleton and the nucleoskeleton survive even long-term digitonin treatment.  相似文献   

11.
Digitonin treatment and the swelling-shrinkage-sonication procedure as used to separate mitochondria membranes were applied to mitochondria from the brown adipose tissue (BAT) of infant rats. Digitonin at a concentration of 0.15 mg/mg mitochondrial protein produced disruption of the outer membrane of BAT mitochondria and a complete release of adenylate kinase. However, fragments of the outer membrane remained firmly attached to the inner membrane-matrix particles (mitoplasts) and sedimented at 10 000 g, as indicated by the activity of monoamine oxidase in the pellet. Only at 0.5 mg digitonin/mg protein did outer membrane become almost entirely separated. Oxidation of external cytochrome c by mitoplasts was only 50% of the total cytochrome oxidase at 0.5 mg digitonin/mg protein, indicating an incomplete exposure of the inner membrane to the external medium. Ultrastructural studies revealed that a large proportion of mitoplasts retained the orthodox configuration under these conditions. Outer membrane fragments obtained by the swelling-shrinkage-sonication procedure were of buoyant density corresponding to 20–30% (weight/vol) sucrose. After a 10 sec sonication of mitochondria, a relatively pure outer membrane fraction could be obtained with a yield not exceeding 20%. Longer sonication increased the yield, but also increased the degree of contamination by inner membrane fragments. Optimum conditions for the separation of outer and inner membranes from brown adipose tissue mitochondria are described.  相似文献   

12.
1. The effects of repetitive treatment of rat liver mitochondria with digitonin were examined. The first treatment results in the removal of the outer membrane. Almost all the NADH-cytochrome c reductase (rotenone-insensitive) is lost whereas the major portions of the soluble and bound enzymes are retained. One exception appears to be the cytochromes, which undergo somewhat larger losses. The resulting inner-membrane complex carries out oxidative phosphorylation and P(i)-ATP exchange. 2. The properties of the inner-membrane complex are affected by the osmoticity of the medium. When it is suspended in water little protein is lost but there is a marked loss of phosphorylation. If after the suspension in water the particulate fraction is reisolated by centrifugation and treated with digitonin, or if the aqueous suspension is treated directly with digitonin and the particulate fraction then reisolated, the phosphorylation is largely restored. 3. Additional treatment of the inner mitochondrial complex with digitonin results in the formation of a particulate fraction that contains approx. 8% of the initial mitochondrial protein, no outer membrane, no soluble mitochondrial enzymes and is still capable of coupled oxidative phosphorylation and P(i)-ATP exchange. These effects cannot be reproduced by treatment with water. 4. The rat liver mitochondria and all of the resulting preparations obtained after digitonin treatment may be stored for long periods in dimethyl sulphoxide with little change of activity.  相似文献   

13.
Phosphate-dependent glutaminase is associated with the inner membrane of rat renal mitochondria. The orientation of this enzyme was characterized by comparing its sensitivity in isolated mitochondria and in mitoplasts to two membrane impermeable inhibitors. Mitoplasts were prepared by repeated swelling of mitochondria in a hypotonic phosphate solution. This procedure released greater than 70% of the adenylate kinase from the intermembrane space, but less than 10 and 25% of the marker activities characteristic of the inner membrane and matrix compartments, respectively. The addition of 20 microM p-chloromercuriphenylsulfonate (pCMPS) caused a rapid inactivation of the purified glutaminase. In contrast, the glutaminase contained in isolated mitochondria and mitoplasts was only slightly affected by the addition of up to 2 mM pCMPS. Similarly, the activity in mitochondria and mitoplasts was not inhibited by the addition of an excess of inactivating Fab antibodies. However, a similar extent of inactivation occurred when either membrane fraction was incubated with concentrations of octylglucoside greater than 0.35%. Mitochondria were also treated with increasing concentrations of digitonin. At 0.4 mg digitonin/mg protein, all of the adenylate kinase was released but the glutaminase activity was either slightly inhibited or unaffected by the addition of pCMPS or the Fab antibodies, respectively. These studies establish that the glutaminase is localized on the inner surface of the inner membrane. Therefore, mitochondrial catabolism of glutamine must occur only within the matrix compartment.  相似文献   

14.
A subset of mitochondrial carrier proteins from plants contain a cleavable N-terminal extension. We have used a reconstituted protein import assay system into intermembrane space-depleted mitochondria to study the role of the cleavable extension in the carrier import pathway. Insertion of carrier proteins into the inner membrane can be stimulated by the addition of a soluble intermembrane space fraction isolated from plant mitochondria. Greater stimulation of import of the adenine nucleotide carrier (ANT) and phosphate carrier (Pic), which contain N-terminal cleavable extensions, was observed compared to the import of the oxoglutarate malate carrier (OMT), which does not contain a cleavable extension. Removal of the N-terminal cleavable extension from ANT and Pic resulted in loss of stimulation of insertion into the inner membrane. Conversely, addition of the N-terminal extension from ANT or Pic to OMT resulted in significantly enhanced insertion into the inner membrane. The polytopic inner membrane proteins TIM17 and TIM23 that are imported via the carrier import pathway contain no cleavable extension, displayed high-level stimulation of insertion into the inner membrane by addition of the intermembrane space fraction. Addition of the N-terminal cleavable extension from carrier proteins to TIM23 enhanced insertion of TIM23 into the inner membrane even in the absence of the soluble intermembrane space fraction. Together, these results demonstrate that the cleavable N-terminal extensions present on carrier proteins from plants are required for efficient insertion into the inner mitochondrial membrane, and that they can stimulate insertion of any carrier-like protein into the inner membrane.  相似文献   

15.
Inge Romslo  Torgeir Flatmark 《BBA》1974,347(2):160-167
Isolated rat liver mitochondria accumulate iron partly by an energy-dependent and partly by an energy-independent mechanism (Romslo, I. and Flatmark, T. (1973) Biochim. Biophys. Acta 305, 29–40). When the iron-loaded mitochondria were disrupted mechanically and the mitochondrial subfractions isolated by density gradient centrifugation, the iron accumulated by the energy-dependent mechanism was recovered mainly in the soluble matrix and intermembrane space (approx. 50% of the total activity) and the inner membrane (approx. 30%). A negligible contribution to the total iron content of the soluble fraction by intermembrane space was revealed by the preparation of ‘mitoplasts’. On the other hand, most of the energy-independent iron accumulation was confined to the outer and inner membranes (approx. 35% of the total activity in each).  相似文献   

16.
Mitochondria harbor a conserved proteolytic system that mediates the complete degradation of organellar proteins. ATP-dependent proteases, like a Lon protease in the matrix space and m- and i-AAA proteases in the inner membrane, degrade malfolded proteins within mitochondria and thereby protect the cell against mitochondrial damage. Proteolytic breakdown products include peptides and free amino acids, which are constantly released from mitochondria. It remained unclear, however, whether the turnover of malfolded proteins involves only ATP-dependent proteases or also oligopeptidases within mitochondria. Here we describe the identification of Mop112, a novel metallopeptidase of the pitrilysin family M16 localized in the intermembrane space of yeast mitochondria. This peptidase exerts important functions for the maintenance of the respiratory competence of the cells that overlap with the i-AAA protease. Deletion of MOP112 did not affect the stability of misfolded proteins in mitochondria, but resulted in an increased release from the organelle of peptides, generated upon proteolysis of mitochondrial proteins. We find that the previously described metallopeptidase saccharolysin (or Prd1) exerts a similar function in the intermembrane space. The identification of peptides released from peptidase-deficient mitochondria by mass spectrometry indicates a dual function of Mop112 and saccharolysin: they degrade peptides generated upon proteolysis of proteins both in the intermembrane and matrix space and presequence peptides cleaved off by specific processing peptidases in both compartments. These results suggest that the turnover of mitochondrial proteins is mediated by the sequential action of ATP-dependent proteases and oligopeptidases, some of them localized in the intermembrane space.  相似文献   

17.
Rat liver mitochondria were fractionated into inner and outer membranes and soluble intermembrane space and matrix. The protein components of these fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Mitochondria contained at least 20 components ranging in molecular weights from 10 000 to 140 000. Inner membranes differed markedly from outer membranes both in number of components and size distribution. The intermembrane space contained a few polypeptide species. These were of low molecular weight. The matrix was characterized by a high molecular weight component (130 000) which comprised 30% of this fraction. A major carbohydrate-containing polypeptide with an approximate molecular weight of 93 000 was detected in outer membrane preparations.  相似文献   

18.
Sulfite oxidase, a soluble enzyme in mitochondrial intermembrane space, was synthesized as a precursor protein larger than the authentic enzyme when rat liver RNA was translated invitro using reticulocyte lysate. When the invitro translation products were incubated with isolated rat liver mitochondria, the precursor of sulfite oxidase was converted to the size of the mature enzyme. The invitro processed mature enzyme was no longer susceptible to externally added proteases and was extractable by a hypotonic treatment of the mitochondria, suggesting its location in the intermembrane space. When mitochondria were subfractionated, most of the processing activity was recovered in the mitoplast fraction. The import-processing activity of mitochondria was inhibited by CCCP, oligomycin, or atractyloside in the presence of KCN. These results suggest that the import of sulfite oxidase into mitochondrial intermembrane space requires the participation of inner membrane.  相似文献   

19.
Preparations enriched with plasmalemmal, outer mitochondrial, or Golgi complex membranes from rat liver were subfractionated by isopycnic centrifugation, without or after treatment with digitonin, to establish the subcellular distribution of a variety of enzymes. The typical plasmalemmal enzymes 5'-nucleotidase, alkaline phosphodiesterase I, and alkaline phosphatase were markedly shifted by digitonin toward higher densities in all three preparations. Three glycosyltransferases, highly purified in the Golgi fraction, were moderately shifted by digitonin in both this Golgi complex preparation and the microsomal fraction. The outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the out mitochondrial membrane preparation, in agreement wit its behavior in microsomes. With the exception of NADH cytochrome c reductase (which was concentrated in the outer mitochondrial membrane preparation), typical microsomal enzymes (glucose-6-phosphatase, esterase, and NADPH cytochrome c reductase) displayed low specific activities in the three preparations; except for part of the glucose-6-phosphatase activity in the plasma membrane preparation, their density distributions were insensitive to digitonin, as they were in microsomes. The influence of digitonin on equilibrium densities was correlated with its morphological effects. Digitonin induced pseudofenestrations in plasma membranes. In Golgi and outer mitochondrial membrane preparations, a few similarly altered membranes were detected in subfractions enriched with 5'-nucleotidase and alkaline phosphodiesterase I. The alterations of Golgi membranes were less obvious and seemingly restricted to some elements in the Golgi preparation. No morphological modification was detected in digitonin-treated outer mitochondrial membranes. These results indicate that each enzyme is associated with the same membrane entity in all membrane preparations and support the view that there is little overlap in the enzymatic equipment of the various types of cytomembranes.  相似文献   

20.
The location of hexokinase at the surface of brain mitochondria was investigated by electron microscopy using immuno-gold labelling techniques. The enzyme was located where the two mitochondrial limiting membranes were opposed and contact sites were possible. Disruption of the outer membrane by digitonin did not remove bound hexokinase and creatine kinase from brain mitochondria, although the activity of outer membrane markers and adenylate kinase decreased, suggesting a preferential location of both enzymes in the contact sites. In agreement with that, a membrane fraction was isolated from osmotically lysed rat brain mitochondria in which hexokinase and creatine kinase were concentrated. The density of this kinase-rich fraction was specifically increased by immuno-gold labelling of hexokinase, allowing a further purification by density gradient centrifugation. The fraction was composed of inner and outer limiting membrane components as shown by the specific marker enzymes, succinate dehydrogenase and NADH-cytochrome-c-oxidase (rotenone insensitive). As reported earlier for the enriched contact site fraction of liver mitochondria the fraction from brain mitochondria contained a high activity of glutathione transferase and a low cholesterol concentration. Moreover, the contacts showed a higher Ca2+ binding capacity in comparison to outer and inner membrane fractions. This finding may have regulatory implications because glucose phosphorylation via hexokinase activated the active Ca2+ uptake system and inhibited the passive efflux, resulting in an increase of intramitochondrial Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号