首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chiroptical properties of natural DNA molecules differing in base composition were studied in solutions with high concentrations of monovalent sodium and caesium salts. It was found that the properties were dependent on the DNA base sequence and nature of both cations and anions. A comparison with the behaviour of the synthetic molecules of DNA demonstrated that the salt-induced changes in the natural molecules of DNA could not be accounted for by the appearance of the left-handed Z conformation. On the other hand, the tendency of the alternating A--T sequence to assume the novel X--DNA conformation seems to play a role even in the conformational properties of natural DNA.  相似文献   

2.
3.
In this paper, the enhancement of thermal properties of polymer-coated silver nanoparticles by the addition of plasmid DNA is described. Nanoparticles of noble metals such as gold and silver possess specific characteristics by virtue of their quantum size effects. Therefore, noble metal nanoparticles are used for chemical sensing and biosensing applications based on their localized surface plasmon resonance absorption that can be measured in the visible region. The polyvinylpyrrolidone (PVP)-coated noble metal nanoparticles, in particular, with high dispersion ability in water, offer several advantages for sensing applications. However, some difficulties are encountered in the use of these PVP-coated noble metal nanoparticles for sensing applications due to their poor thermal properties. To improve the thermal properties of PVP-coated noble metal nanoparticles, we found that the addition of plasmid DNA to PVP-coated silver nanoparticles enhances their thermal properties due to good thermal stability of DNA. The introduction of plasmid DNA into PVP-coated silver nanoparticle dispersion enhanced the thermal properties through the formation of a complex between the nanoparticles and plasmid DNA. Furthermore, other polymers such as proteins and polyethylene glycol did not enhance the thermal properties of PVP-coated silver nanoparticles. Thus, the PVP-coated silver nanoparticle–plasmid DNA complex with enhanced thermal properties has a great potential for use in medical and drug delivery applications.  相似文献   

4.
The properties of the particles of cholesteric liquid-crystalline dispersions formed by double-stranded DNA molecules obtained as a result of phase exclusion of these molecules from water-salt polymer-containing solutions are briefly described. Physicochemical properties of quasinematic layers of dispersion particles and double-stranded DNA molecules in their content are taken into account in the course of developing fundamental background of the liquid-crystalline approach to the DNA structural nanotechnology. According to different versions of this approach, which is based on intraparticle gelation of cholesteric liquid-crystalline dispersions, spatial structures (DNA nanoconstructions, “rigid” DNA particles) with unique properties, are created. By means of atomic force microscopy images of “rigid” DNA particles of different type are registered. Specific properties of metallic nanoparticles (in particular, gold nanoparticles) are considered while developing the other approach to DNA structural nanotechnology, which provides the basis for “metallized” DNA nanoconstructions.  相似文献   

5.
We use the cyclization of small DNA molecules, approximately 200 bp in length, to study conformational properties of DNA fragments with single-stranded gaps. The approach is extremely sensitive to DNA conformational properties and, being complemented by computations, allows a very accurate determination of the fragment's conformational parameters. Sequence-specific nicking endonucleases are used to create the 4-nt-long gap. We determined the bending rigidity of the single-stranded region in the gapped DNA. We found that the gap of 4 nt in length makes all torsional orientations of DNA ends equally probable. Our results also show that the gap has isotropic bending rigidity. This makes it very attractive to use gapped DNA in the cyclization experiments to determine DNA conformational properties, since the gap eliminates oscillations of the cyclization efficiency with the DNA length. As a result, the number of measurements is greatly reduced in the approach, and the analysis of the data is greatly simplified. We have verified our approach on DNA fragments containing well-characterized intrinsic bends caused by A-tracts. The obtained experimental results and theoretical analysis demonstrate that gapped-DNA cyclization is an exceedingly sensitive and accurate approach for the determination of DNA bending.  相似文献   

6.
DNA-dependent protein kinase (DNA-PK) is a DNA end-activated protein kinase composed of a catalytic subunit, DNA-PKcs, and a DNA binding subunit, Ku, that is involved in repair of DNA double-stranded breaks (DSBs). We have previously shown that DNA-PKcs interacts with single-stranded DNA (ssDNA) ends with a separate ssDNA binding site to be activated for its kinase activity. Here, the properties of the ssDNA binding site were examined by using DNA fragments with modified ssDNA extensions. DNA fragments with a wide range of ssDNA modifictations activated DNA-PKcs, indicating a relaxed specificity for the chemical structure of terminal nucleotides of a DSB. Methyl substitution of the phosphate backbone impaired kinase activation but not binding, indicating that interaction with the DNA backbone was involved in kinase activation. Experiments with RNA and RNA/DNA hybrid fragments suggested that the discrimination between RNA and DNA ends resides in the double-stranded DNA binding function of DNA-PKcs. DNA fragments exposing only one ssDNA end activated DNA-PKcs poorly, suggesting that DNA-PKcs distinguishes between DSBs and ssDNA breaks by simultaneous interaction with two ssDNA ends. These properties potentially explain how DNA-PKcs can be specifically activated by DSBs but still recognize the diverse chemical structures exposed when DSBs are introduced by ionizing radiation.  相似文献   

7.
Living organisms typically store their genomic DNA in a condensed form. Mechanistically, DNA condensation can be driven by macromolecular crowding, multivalent cations, or positively charged proteins. At low DNA concentration, condensation triggers the conformational change of individual DNA molecules into a compacted state, with distinct morphologies. Above a critical DNA concentration, condensation goes along with phase separation into a DNA-dilute and a DNA-dense phase. The latter DNA-dense phase can have different material properties and has been reported to be rather liquid-like or solid-like depending on the characteristics of the DNA and the solvent composition. Here, we systematically assess the influence of DNA length on the properties of the resulting condensates. We show that short DNA molecules with sizes below 1 kb can form dynamic liquid-like assemblies when condensation is triggered by polyethylene glycol and magnesium ions, binding of linker histone H1, or nucleosome reconstitution in combination with linker histone H1. With increasing DNA length, molecules preferentially condense into less dynamic more solid-like assemblies, with phage λ-DNA with 48.5 kb forming mostly solid-like assemblies under the conditions assessed here. The transition from liquid-like to solid-like condensates appears to be gradual, with DNA molecules of roughly 1–10 kb forming condensates with intermediate properties. Titration experiments with linker histone H1 suggest that the fluidity of condensates depends on the net number of attractive interactions established by each DNA molecule. We conclude that DNA molecules that are much shorter than a typical human gene are able to undergo liquid-liquid phase separation, whereas longer DNA molecules phase separate by default into rather solid-like condensates. We speculate that the local distribution of condensing factors can modulate the effective length of chromosomal domains in the cell. We anticipate that the link between DNA length and fluidity established here will improve our understanding of biomolecular condensates involving DNA.  相似文献   

8.
A double-loop model for the replication of eukaryotic DNA   总被引:2,自引:0,他引:2  
Coordinated DNA synthesis of both strands at the replication fork by a fixed 'replisome' may cause dynamic and topological problems. Based upon known properties of DNA helicase, DNA primase and DNA topoisomerases, and on novel properties of DNA polymerases and DNA ligase, we propose a 'double-loop' model for the replication of eukaryotic DNA that could minimize such problems.  相似文献   

9.
The chromosomal DNA of bacteria is folded into a compact body called the nucleoid, which is composed essentially of DNA (~80%), RNA (~10%), and a number of different proteins (~10%). These nucleoid proteins act as regulators of gene expression and influence the organization of the nucleoid by bridging, bending, or wrapping the DNA. These so-called architectural properties of nucleoid proteins are still poorly understood. For example, the reason why certain proteins compact the DNA coil in certain environments but make the DNA more rigid instead in other environments is the subject of ongoing debates. Here, we address the question of the impact of the self-association of nucleoid proteins on their architectural properties and try to determine whether differences in self-association are sufficient to induce large changes in the organization of the DNA coil. More specifically, we developed two coarse-grained models of proteins, which interact identically with the DNA but self-associate differently by forming either clusters or filaments in the absence of the DNA. We showed through Brownian dynamics simulations that self-association of the proteins dramatically increases their ability to shape the DNA coil. Moreover, we observed that cluster-forming proteins significantly compact the DNA coil (similar to the DNA-bridging mode of H-NS proteins), whereas filament-forming proteins significantly increase the stiffness of the DNA chain instead (similar to the DNA-stiffening mode of H-NS proteins). This work consequently suggests that the knowledge of the DNA-binding properties of the proteins is in itself not sufficient to understand their architectural properties. Rather, their self-association properties must also be investigated in detail because they might actually drive the formation of different DNA-protein complexes.  相似文献   

10.
We describe here our recent studies of the DNA binding properties of Msh2-Msh6 and Mlh1-Pms1, two protein complexes required to repair mismatches generated during DNA replication. Mismatched DNA binding by Msh2-Msh6 was probed by mutagenesis based on the crystal structure of the homologous bacterial MutS homodimer bound to DNA. The results suggest that several amino acid side chains inferred to interact with the DNA backbone near the mismatch are critical for repair activity. These contacts, which are different in Msh2 and Msh6, likely facilitate stacking and hydrogen bonding interactions between side chains in Msh6 and the mismatched base, thus stabilizing a kinked DNA conformation that permits subsequent repair steps coordinated by the Mlh1-Pms1 heterodimer. Mlh1-Pms1 also binds to DNA, but independently of a mismatch. Mlh1-Pms1 binds short DNA substrates with low affinity and with a slight preference for single-stranded DNA. It also binds longer duplex DNA molecules, but with a higher affinity indicative of cooperative binding. Indeed, imaging by atomic force microscopy reveals cooperative DNA binding and simultaneous interaction with two DNA duplexes. The novel DNA binding properties of Mlh1-Pms1 may be relevant to signal transduction during DNA mismatch repair and to recombination, meiosis and cellular responses to DNA damage.  相似文献   

11.
In vitro evolution is a new, important laboratory method to evolve molecules with desired properties. It has been used in a variety of biological studies and drug development. In this paper, we study one important mutagenesis method used in in vitro evolution experiments called DNA shuffling. We construct a mathematical model for DNA shuffling and study the properties of molecules after DNA shuffling experiments based on this model. The model for DNA shuffling consists of two parts. First we apply the Lander-Waterman model for physical mapping by fingerprinting random clones to model the distribution of regions that can be reassembled through DNA shuffling. Then we present a model for recombination between different DNA species with different mutations. We compare our theoretical results with experimental data. Finally we propose novel applications of the theoretical results to the optimal design of DNA shuffling experiments and to physical mapping using DNA shuffling.  相似文献   

12.
Mycobacterium smegmatis topoisomerase I differs from the typical type IA topoisomerase in many properties. The enzyme recognizes both single and double-stranded DNA with high affinity and makes sequence-specific contacts during DNA relaxation reaction. The enzyme has a conserved N-terminal domain and a highly varied C-terminal domain, which lacks the characteristic zinc binding motifs found in most of the type I eubacterial enzymes. The roles of the individual domains of the enzyme in the topoisomerase I catalyzed reactions were examined by comparing the properties of full-length topoisomerase I with those of truncated polypeptides lacking the conserved N-terminal or the divergent C-terminal region. The N-terminal larger fragment retained the site-specific binding, DNA cleavage and religation properties, hallmark characteristics of the full-length M.smegmatis topoisomerase I. In contrast, the non-conserved C-terminal fragment lacking the typical DNA binding motif, exhibited non-specific DNA binding behaviour. The two polypeptide fragments, on their own do not catalyze DNA relaxation reaction. The relaxation activity is restored when both the fragments are mixed in vitro reconstituting the enzyme function. These results along with the DNA interaction pattern of the proteins implicate an essential role for the C-terminal region in single-strand DNA passage between the two transesterification reactions catalyzed by the N-terminal domain.  相似文献   

13.
Imogolite is one of the clay minerals contained in volcanic ash soils. The novel hybrid hydrogels were prepared from imogolite nanofibers and DNA by utilizing strong interaction between the aluminol groups on imogolite surface and phosphate groups of DNA. The hybrid hydrogels of imogolite and DNA were prepared in various feed ratios, and their physicochemical properties and molecular aggregation states were investigated in both dispersion and gel states. The maximum DNA content in the hybrid gels was shown in equivalent molar ratio of imogolite and DNA. The physical properties of the hybrid gels were changed by varying DNA blend ratios. In the dispersion state, the hybrid gels showed a fibrous structure of imogolite, whereas a continuous network structure was observed in pure imogolite, indicating that the hybrid with DNA enhanced the dispersion of imogolite. In the gel state, DNA and imogolite nanofibers formed a 3D network structure.  相似文献   

14.
Viscosimetric and kinetic results allow one to characterize three modes of DNA binding in the ellipticine series: (1) Ellipticine and its 9 methoxy derivative, which present maximal DNA lengthening properties and bind DNA through a single step mechanism, can be considered as pure intercalators. (2) Ellipticinium derivatives and short-chain substituted oxazolopyridocarbazoles, which present intermediate DNA lengthening properties, bind DNA through a two-step mechanism, one being intercalation. (3) Long-chain substituted oxazolopyridocarbazole derivatives, which display the smallest DNA lengthening properties, bind DNA through a single-step mechanism, probably resulting from an outside binding mode. The viscosimetric and kinetic results are compared with the thermodynamic results obtained from the temperature dependence of the binding constants. It appears that drugs binding on the outside of the DNA double helix tend to have large enthalpy and small entropy contributions, whereas pure intercalating drugs have contributions from both enthalpy and entropy, with entropy dominating by about 2:1. Drugs showing two binding modes exhibit a continuum between the aforementioned extremes, with no breaks in behavior. From this comparison, a correlation between thermodynamic data and DNA binding modes is proposed. Possible molecular implications of both enthalpy and entropy to DNA binding free energy are discussed.  相似文献   

15.
16.
RSC (remodel the structure of chromatin) is an essential chromatin remodeler of Saccharomyces cerevisiae that has been shown to have DNA translocase properties. We studied the DNA binding properties of a "trimeric minimal RSC" (RSCt) of the RSC chromatin remodeling complex and the effect of nucleotides on this interaction using fluorescence anisotropy. RSCt binds to 20 bp fluorescein-labeled double-stranded DNA with a K(d) of ~100 nM. The affinity of RSCt for DNA is reduced in the presence of AMP-PNP and ADP in a concentration-dependent manner with the addition of AMP-PNP having more pronounced effect. These differences in the magnitude at which the binding of ADP and AMP-PNP affects the affinity of DNA binding by RSCt suggest that the physical movement of the enzyme along DNA begins between the binding of ATP and its subsequent hydrolysis. Furthermore, the fact that the highest affinity for DNA binding by RSCt occurs in the absence of bound nucleotide offers a mechanistic explanation for the apparent low processivity of DNA translocation by the enzyme.  相似文献   

17.
In this paper we propose a detailed analysis of structural and morphological properties of two poly-L-lysine (PLL)-based transfection formulations, PLL/DNA and pegylated PLL (PLL-g-PEG)/DNA, by means of atomic force microscopy (AFM) and transmission electron microscopy (TEM). Comparing PLL-g-PEG/DNA with PLL/DNA polyplexes, we demonstrate that, due to the presence of PEG, the particles differ not only in size, shape, and crystalline structure, but also in transfection efficiency. While PLL condensates DNA in large agglomerates, PLL grafted with polyethylene glycol 2000 can condensate DNA in long filaments with diameters of some nanometers (6-20 nm). These structures are dependent on the grafting ratio and are more efficient than compacted ones, showing that DNA uptake and processing by cell is directly related to physicochemical properties of the polyplexes.  相似文献   

18.
The Caulobacter crescentus bacteriophage phiCbK was studied with respect to the physical and chemical properties of both the phage and its deoxyribonucleic acid (DNA). Electron micrographs reveal the phage to be among the largest DNA bacteriophages reported, with head dimensions of 64 by 195 nm and a flexible tail 275 nm in length. The phage is composed of 57% DNA. This DNA is double-stranded as indicated by (i) the sharp increase in extinction coefficient over a narrow range of temperature increase, (ii) an increase in density in CsCl upon thermal denaturation, and (iii) the equivalence of guanine and cytosine as well as adenine and thymine, determined by chemical analysis. phiCbK DNA cosediments with Escherichia coli phage T2 DNA and has therefore been assigned an S(20,w) value of 63.5S. The size of the phage and its DNA and the percentage of DNA indicate that the phiCbK phage head is relatively loosely packed. The properties of the DNA from bacteriophage phiCbK are similar to those of host C. crescentus DNA with respect to buoyant density, thermal transition point, and guanine plus cytosine content.  相似文献   

19.
20.
The histone-like HU (heat unstable) protein plays a key role in the organization and regulation of the Escherichia coli genome. The nonspecific nature of HU binding to DNA complicates analysis of the mechanism by which the protein contributes to the looping of DNA. Conventional models of the looping of HU-bound duplexes attribute the changes in biophysical properties of DNA brought about by the random binding of protein to changes in the effective parameters of an ideal helical wormlike chain. Here, we introduce a novel Monte Carlo approach to study the effects of nonspecific HU binding on the configurational properties of DNA directly. We randomly decorated segments of an ideal double-helical DNA with HU molecules that induce the bends and other structural distortions of the double helix find in currently available X-ray structures. We find that the presence of HU at levels approximating those found in the cell reduces the persistence length by roughly threefold compared with that of naked DNA. The binding of protein has particularly striking effects on the cyclization properties of short duplexes, altering the dependence of ring closure on chain length in a way that cannot be mimicked by a simple wormlike model and accumulating at higher-than-expected levels on successfully closed chains. Moreover, the uptake of protein on small minicircles depends on chain length, taking advantage of the HU-induced deformations of DNA structure to facilitate ligation. Circular duplexes with bound HU show much greater propensity than protein-free DNA to exist as negatively supercoiled topoisomers, suggesting a potential role of HU in organizing the bacterial nucleoid. The local bending and undertwisting of DNA by HU, in combination with the number of bound proteins, provide a structural rationale for the condensation of DNA and the observed expression levels of reporter genes in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号