首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most prostate cancers escape endocrine therapy by diverse mechanisms. One of them might be growth repression by androgen. We reported that androgen represses the growth in culture of MOP cells (a sub-line of LNCaP cells) and that of MOP cell xenografts, although tumor growth becomes androgen-independent (AI). Here we explore whether AI tumors contain androgen-responsive cells. ME carcinoma cells were established from AI tumors. The responses to androgen were examined by cell counting, DAPI labeling, flow cytometry, PSA immunoassay and tumor size follow-up. Androgen receptors (AR) were analyzed by western blotting and DNA sequencing. The pattern of responses of these cells to androgen was compared to that of MOP cells and that of JAC cells established from LNCaP-like MOP cells. R1881, a synthetic androgen: (1) repressed the growth of all the six ME cell lines obtained, MOP and JAC cells, (2) augmented the secretion of PSA, (3) induced spectacular cell bubbling/fragmentation and (4) blocked the cell cycle and induced a modest increase of apoptosis. All the androgen-repressed cells expressed the same level of mutated AR as LNCaP cells. In nude mice, the growth of ME-2 cell xenografts displayed transient androgen repression similar to that of MOP cells. In culture neither fibroblasts nor extra-cellular matrix altered the effects of R1881 on cell proliferation. These results demonstrate that androgen-independent tumors contain androgen-responsive cells. The apparent discrepancy between the responses to androgen of tumors and those of carcinoma cells in culture suggests that microenvironmental factors contribute to the androgen responsiveness of tumor cells in vivo. These modifications, albeit unspecified, could be suitable targets for restoring the androgen responsiveness of AI tumors.  相似文献   

2.
3.
LNCaP cells (derived from a lymph node carcinoma of the human prostate) show androgen responsive growth. Progestagens, estradiol and antiandrogens competed with androgens for binding to the androgen receptor in the cells to a higher extent than in other androgen-sensitive systems. Optimal growth (3–4 fold increase in DNA content of 6 day cell cultures vs controls) was observed after addition of the synthetic androgen R1881 (0.1 nM). Both steroidal and non-steroidal antiandrogens did not suppress the androgen responsive growth. At a concentration of 10 nM cyproterone acetate or 100 nM RU 23908, growth was even stimulated to an extent comparable to that observed after addition of androgen. Cyproterone acetate and RU 23908 also increased the number of epidermal growth factor receptors expressed at the cell surface to a comparable level as did the androgen. Like androgens, cyproterone acetate, RU 23908 or estradiol stimulated the secretion per cell of prostate specific acid phosphatase in the culture fluid. In conclusion, antiandrogens can exert striking stimulatory effects on the proliferation of LNCaP cells probably due to a defective androgen receptor system. It is discussed that comparable changes in the specificity of the androgen receptor in prostate cancer cells may give these cells an advantage in growth rate and may contribute to development of tumors characterized as hormone independent.  相似文献   

4.
We investigated the effects of androgen and taxol on the androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cell lines. Cells were treated for 48 and 72 h with 0.05-1 nM of the synthetic androgen R1881 and with 100 nM taxol. Treatment of LNCaP cells with 0.05 nM R1881 led to increased cell proliferation, whereas treatment with 1 nM R1881 resulted in inhibited cell division, DNA cycle arrest, and altered centrosome organization. After treatment with 1 nM R1881, chromatin became clustered, nuclear envelopes convoluted, and mitochondria accumulated around the nucleus. Immunofluorescence microscopy with antibodies to centrosomes showed altered centrosome structure. Although centrosomes were closely associated with the nucleus in untreated cells, they dispersed into the cytoplasm after treatment with 1 nM R1881. Microtubules were only faintly detected in 1 nM R1881-treated LNCaP cells. The effects of taxol included microtubule bundling and altered mitochondria morphology, but not DNA organization. As expected, the androgen-independent prostate cancer cell line DU145 was not affected by R1881. Treatment with taxol resulted in bundling of microtubules in both cell lines. Additional taxol effects were seen in DU145 cells with micronucleation of DNA, an indication of apoptosis. Simultaneous treatment with R1881 and taxol had no additional effects on LNCaP or DU145 cells. These results suggest that LNCaP and DU145 prostate cancer cells show differences not only in androgen responsiveness but in sensitivity to taxol as well.  相似文献   

5.
Androgens play a major role in the growth and survival of primary prostate tumors. The molecular mechanisms involved in prostate cancer progression are not fully understood but genes that are regulated by androgens clearly influence this process. We searched for new androgen-regulated genes using the Affymetrix GeneChip Human Genome U95 Set in the androgen-sensitive LNCaP prostate cancer cell line. Analysis of gene expression profiles revealed that myosin light chain kinase (MLCK) mRNA levels were markedly down-regulated by the synthetic androgen R1881. The microarray data were confirmed by ribonuclease protection assays. RNA and protein analyses revealed that LNCaP cells express both long (non-muscle) and short (smooth muscle) isoforms, and that both isoforms are down-regulated by androgens. Taken together, these data identify MLCK as a novel downstream target of the androgen signalling pathway in prostate cells.  相似文献   

6.
We have investigated the modulation of prostatic acid phosphatase expression in the human prostatic cancer cell line LNCaP in response to the natural androgens testosterone and dihydrotestosterone, the female sex steroid estradiol and the synthetic androgen R1881 (methyltrienolone). Testosterone and dihydrotestosterone at 1 microgram/ml enhance the acid phosphatase synthesis by a factor of 3.5, while a hundred-fold lower concentration of the synthetic androgen R1881 induces an almost five-fold increase in the expression of this enzyme. The stimulation by all androgens tested and estradiol was dose-dependent. The synthetic glucocorticoid triamcinolone acetonide does not modulate the prostatic acid phosphatase expression in LNCaP cells, neither alone nor in combination with R1881.  相似文献   

7.
Androgens exert a peculiar biphasic dose-dependent influence on the proliferation of LNCaP cells, a widely used model to study androgen effects on prostate cancer cells. Low concentrations of androgen stimulate proliferation, but high concentrations inhibit proliferation and induce strong expression of differentiation markers. In order to gain more insight into the molecular mechanisms that underlie these changes we studied the influence of a wide concentration range of the synthetic androgen R1881 on several cell cycle- and differentiation-related parameters. Low concentrations (0.1 nM), known to promote LNCaP cell proliferation, induce an increase of Retinoblastoma protein phosphorylation, accompanied by an increase of E2F-1 protein levels and E2F activity and by increased expression of the E2F-target gene products E2F-1 and cyclin A. High concentrations of R1881 (10 nM) induce strong expression of the differentiation marker prostate-specific antigen. Retinoblastoma protein is largely hypophosphorylated, resulting in low E2F activity and low concentrations of E2F-1 and cyclin A mRNA. Finally, there is a strong increase of p27(KIP1) protein, but not of p27(KIP1) mRNA. These results indicate that the biphasic dose response of LNCaP proliferation to androgen is closely reflected in Rb phosphorylation, E2F activity and p27(KIP1) protein expression.  相似文献   

8.
Autologous down-regulation of androgen receptor messenger ribonucleic acid   总被引:6,自引:0,他引:6  
Autoregulation of androgen receptor (AR) mRNA was investigated using Northern blot analysis with AR cDNA fragments as probes. The amount of AR mRNA increased 2- to 10-fold with androgen withdrawal and decreased below control levels after androgen stimulation in rat ventral prostate, coagulating gland, epididymis, seminal vesicle, kidney, and brain, and in a human prostate cancer cell line, LNCaP. In rat ventral prostate, AR mRNA increased 2- to 3-fold within 24 h after castration and remained elevated for 4 days. Treatment with testosterone propionate beginning 24 h after castration reduced ventral prostate AR mRNA 4-fold within 8 h of androgen replacement. Administration of estradiol 24 h after castration had no significant effect on prostatic AR mRNA. Androgens, including testosterone and the synthetic androgen methyltrienolone (R1881), or the antiandrogen cyproterone acetate down-regulated AR mRNA in vitro in LNCaP cells, whereas estradiol was without effect. Administration of testosterone propionate to rats with androgen insensitivity did not decrease AR mRNA. Down-regulation of AR mRNA by androgen is therefore a receptor-mediated process which occurs in vivo in rat tissues that differ in androgen responsiveness and in cultured human prostate cells.  相似文献   

9.
10.
The mitogenic activity of several growth factors on androgen responsive LNCaP human prostate tumor cells was studied. A two-fold stimulation of cell proliferation was observed after a culture period of 6 days in 1 ng EGF/ml, 10 ng TGF-alpha/ml or 20 ng basic FGF/ml. TGF-beta (0.02 ng/ml), which did not affect cell proliferation when added alone to the culture medium, inhibited the EGF- and TGF-alpha-induced growth. The synthetic androgen R1881 (0.1 nM) stimulated cell proliferation three-fold and increased the number of EGF receptors from 11500 to 28500 sites/cell. One of the mechanisms involved in androgen action on these cells is therefore an increased EGF receptor expression and increased sensitivity to EGF. TGF-beta did not directly affect androgen-responsive growth but inhibited the synergistic effect of EGF. A considerable expression of TGF alpha (precursors) could be demonstrated on the cells by immunohistochemical staining. However the staining intensity was not affected by androgens. These results make it less likely that androgen-responsive growth is mediated by regulation of secretion of an EGF- or TGF alpha-like activity, which in turn acts in an autocrine manner to stimulate growth. Estrogens, progestagens and antiandrogens do not inhibit androgen responsive growth of LNCaP cells but have striking growth stimulatory effects, increase EGF receptor level and increase acid phosphatase secretion. LNCaP cells contain a modified androgen receptor system with respect to both steroid specificity and antiandrogen sensitivity. It has recently been shown that the stimulatory effects are due to a mutated amino acid in the steroid binding domain of the androgen receptor.  相似文献   

11.
Semiconductor quantum dots (QDs) are bright fluorescent nanoparticles that have been successfully used for the detection of biomarker expression in cells. The objective of the present study is to use this technology in a multiplexing manner to determine at a single cell level the expression of a cell-specific bio-marker, prostate-specific antigen (PSA) expressed by human prostate cancer LNCaP and ARCaP cell lines. Here we compared the sensitivity of immunohistochemistry (IHC) and QD-based detection of AR and PSA expression in these cell lines. Further, we conducted multiplexing QD-based detection of PSA and androgen receptor (AR) expression in LNCaP cells subjecting to androgen (R1881) stimulation. The involvement of AR in PSA regulation in LNCaP cells, at a single cell level, was confirmed by the co-incubation of LNCaP cells in the presence of both R1881 and its receptor antagonist, bicalutamide (Casodex). We showed here the superior quality of QDs, in comparison to IHC, for the detection of AR and PSA in cultured LNCaP and ARCaP cells. Multiplexing QDs technique can be used to detect simultaneously AR and PSA expression induced by R1881 which promoted AR translocation from its cytosolic to the nuclear compartment. We observed AR antagonist, bicalutamide, inhibited AR nuclear translocation and PSA, but not AR expression in LNCaP cells.  相似文献   

12.
13.
Versican, one of the key components of prostatic stroma, plays a central role in tumor initiation and progression. Here, we investigated promoter elements and mechanisms of androgen receptor (AR)-mediated regulation of the versican gene in prostate cancer cells. Using transient transfection assays in prostate cancer LNCaP and cervical cancer HeLa cells engineered to express the AR, we demonstrate that the synthetic androgen R1881 and dihydrotestosterone stimulate expression of a versican promoter-driven luciferase reporter vector (versican-Luc). Further, both basal and androgen-stimulated versican-Luc activities were significantly diminished in LNCaP cells, when AR gene expression was knocked down using a short hairpin RNA. Methylation-protection footprinting analysis revealed an AR-protected element between positions +75 and +102 of the proximal versican promoter, which strongly resembled a consensus steroid receptor element. Electrophoretic mobility shift and supershift assays revealed strong and specific binding of the recombinant AR DNA binding domain to oligonucleotides corresponding to this protected DNA sequence. Site-directed mutagenesis of the steroid receptor element site markedly diminished R1881-stimulated versican-Luc activity. In contrast to the response seen using LNCaP cells, R1881 did not significantly induce versican promoter activity and mRNA levels in AR-positive prostate stromal fibroblasts. Interestingly, overexpression of beta-catenin in the presence of androgen augmented versican promoter activity 10- and 30-fold and enhanced versican mRNA levels 2.8-fold in fibroblasts. In conclusion, we demonstrate that AR transactivates versican expression, which may augment tumor-stromal interactions and may contribute to prostate cancer progression.  相似文献   

14.
Biophysical and biochemical properties of the microenvironment regulate cellular responses such as growth, differentiation, morphogenesis and migration in normal and cancer cells. Since two-dimensional (2D) cultures lack the essential characteristics of the native cellular microenvironment, three-dimensional (3D) cultures have been developed to better mimic the natural extracellular matrix. To date, 3D culture systems have relied mostly on collagen and Matrigel™ hydrogels, allowing only limited control over matrix stiffness, proteolytic degradability, and ligand density. In contrast, bioengineered hydrogels allow us to independently tune and systematically investigate the influence of these parameters on cell growth and differentiation. In this study, polyethylene glycol (PEG) hydrogels, functionalized with the Arginine-glycine-aspartic acid (RGD) motifs, common cell-binding motifs in extracellular matrix proteins, and matrix metalloproteinase (MMP) cleavage sites, were characterized regarding their stiffness, diffusive properties, and ability to support growth of androgen-dependent LNCaP prostate cancer cells. We found that the mechanical properties modulated the growth kinetics of LNCaP cells in the PEG hydrogel. At culture periods of 28 days, LNCaP cells underwent morphogenic changes, forming tumor-like structures in 3D culture, with hypoxic and apoptotic cores. We further compared protein and gene expression levels between 3D and 2D cultures upon stimulation with the synthetic androgen R1881. Interestingly, the kinetics of R1881 stimulated androgen receptor (AR) nuclear translocation differed between 2D and 3D cultures when observed by immunofluorescent staining. Furthermore, microarray studies revealed that changes in expression levels of androgen responsive genes upon R1881 treatment differed greatly between 2D and 3D cultures. Taken together, culturing LNCaP cells in the tunable PEG hydrogels reveals differences in the cellular responses to androgen stimulation between the 2D and 3D environments. Therefore, we suggest that the presented 3D culture system represents a powerful tool for high throughput prostate cancer drug testing that recapitulates tumor microenvironment.  相似文献   

15.
The LNCaP-FGC (fast growing colony) cell line, a subline derived from the LNCaP cell line, shares all the main characteristics, including its androgen sensitivity, described for the parental line. A number of sublines originating from the FGC line were characterized with respect to their response to steroid-depleted medium and to the synthetic androgen R1881. The growth of FGC cells in DCC medium with 0.1 nM R1881 was stimulated 2-3-fold compared to growth in DCC medium only. FGC cells that were continuously grown in DCC medium did not die, but their growth rate was clearly slowed down, and the cells remained responsive to androgen. These cells, therefore, have the androgen-sensitive, rather than the androgen-dependent phenotype. As cells of the subline FGC-JB could not be maintained in DCC medium, these cells better represent the androgen-dependent cell type. In contrast to the FGC line, cells of the R line, grew equally well in medium with complete or DCC serum. Under none of these culture conditions, R cells could significantly be stimulated further with R1881. Further analysis of the LNCaP-FGC sublines should provide valuable information concerning the development of androgen resistance in human prostate cancer.  相似文献   

16.
17.
18.

Background

Prostate cancer (PCa) is the most frequently diagnosed cancer in North American men. Androgen-deprivation therapy (ADT) accentuates the infiltration of immune cells within the prostate. However, the immunosuppressive pathways regulated by androgens in PCa are not well characterized. Arginase 2 (ARG2) expression by PCa cells leads to a reduced activation of tumor-specific T cells. Our hypothesis was that androgens could regulate the expression of ARG2 by PCa cells.

Methodology/Principal Findings

In this report, we demonstrate that both ARG1 and ARG2 are expressed by hormone-sensitive (HS) and hormone-refractory (HR) PCa cell lines, with the LNCaP cells having the highest arginase activity. In prostate tissue samples, ARG2 was more expressed in normal and non-malignant prostatic tissues compared to tumor tissues. Following androgen stimulation of LNCaP cells with 10 nM R1881, both ARG1 and ARG2 were overexpressed. The regulation of arginase expression following androgen stimulation was dependent on the androgen receptor (AR), as a siRNA treatment targeting the AR inhibited both ARG1 and ARG2 overexpression. This observation was correlated in vivo in patients by immunohistochemistry. Patients treated by ADT prior to surgery had lower ARG2 expression in both non-malignant and malignant tissues. Furthermore, ARG1 and ARG2 were enzymatically active and their decreased expression by siRNA resulted in reduced overall arginase activity and l-arginine metabolism. The decreased ARG1 and ARG2 expression also translated with diminished LNCaP cells cell growth and increased PBMC activation following exposure to LNCaP cells conditioned media. Finally, we found that interleukin-8 (IL-8) was also upregulated following androgen stimulation and that it directly increased the expression of ARG1 and ARG2 in the absence of androgens.

Conclusion/Significance

Our data provides the first detailed in vitro and in vivo account of an androgen-regulated immunosuppressive pathway in human PCa through the expression of ARG1, ARG2 and IL-8.  相似文献   

19.
Prostate cancer is the most frequently diagnosed non-cutaneous tumor of men in Western countries. While surgery is often successful for organ-confined prostate cancer, androgen ablation therapy is the primary treatment for metastatic prostate cancer. However, this therapy is associated with several undesired side-effects, including increased risk of cardiovascular diseases. Shortening the period of androgen ablation therapy may benefit prostate cancer patients. Intermittent Androgen Deprivation therapy improves quality of life, reduces toxicity and medical costs, and delays disease progression in some patients. Cell culture and xenograft studies using androgen receptor (AR)-positive castration-resistant human prostate cancers cells (LNCaP, ARCaP, and PC-3 cells over-expressing AR) suggest that androgens may suppress the growth of AR-rich prostate cancer cells. Androgens cause growth inhibition and G1 cell cycle arrest in these cells by regulating c-Myc, Skp2, and p27Kip via AR. Higher dosages of testosterone cause greater growth inhibition of relapsed tumors. Manipulating androgen/AR signaling may therefore be a potential therapy for AR-positive advanced prostate cancer.  相似文献   

20.
The human prostate tumor cell line LNCaP containd an abnormal androgen receptor system with broad steroid binding specificity. Progestagens, estradiol and several antiandrogens compete with androgens for binding to the androgen receptor in the cells to a higher extent than in other androgen sensitive systems. Optimal growth of LNCaP cells is observed after addition of the synthetic androgen R1881 (0.1 nM). In addition, estrogens, progestagens and several antiandrogens do not inhibit androgen responsive growth, but have striking growth stimulatory effects and increase EGF receptor level and acid phosphatase secretion. We have found that the androgen receptor in the LNCaP cells contains a single point mutation changing the sense of codon 868 (Thr to Ala) in the ligand binding domain. Expression vectors containing the normal or mutated androgen receptor sequence were transfected into COS or HeLa cells. Androgens, progestagens, estrogens and several antiandrogens bind the mutated androgen receptor proteon and activate the expression of an androgen-regulated reporter gene (GRE-tk-CAT), indicating that the mutation directly affects both binding specificity and the induction of gene expression. Interestingly, the antiandrogen casodex showed antiandrogenic properties in growth studies of LNCaP cells and did not induced reporter gene activity in Hela cells transfected with the mutant receptor. The mutated androgen receptor of LNCaP cells is therefore a useful tool in the elucidation of different levels of action of steroids and antisteroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号