共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Y Tai Y Goto J Ninomiya-Tsuji Y Kameoka S Ishibashi K Shiroki T Ide 《Experimental cell research》1988,179(1):50-57
tsJT60, a temperature-sensitive (ts) cell-cycle mutant of Fischer rats, is viable at both the permissive (34 degrees C) and nonpermissive (40 degrees C) temperatures. The cells grow normally in exponential growth phase at both temperatures, but when stimulated with serum from G0 phase they enter S phase at 34 degrees C but not at 40 degrees C. tsJT60 cells transformed with human adenovirus (Ad) 12 dl205, which lacks the E1B 19-kDa polypeptide gene, were lethal at 40 degrees C, whereas tsJT60 cells transformed with Ad12 wt, dl207, which lacks E1B 58-kDa protein gene, or in206B, which produces 19- to 58- kDa fused protein, were viable. Degradation of cell DNA occurred in dl205-transformed tsJT60 cultured at both 34 degrees C and 40 degrees C. Neither cytocidal phenotype nor degradation of DNA occurred in 3Y1 cells (a parental line of tsJT60) transformed with dl205. These results suggest that the lethal phenotype and degradation of DNA are related to the ts mutation in tsJT60 and also to the lack of Ad12 E1B 19kDa polypeptide. 相似文献
2.
Jun Ninomiya-Tsuji Yuso Goto Sadahiko Ishibashi Kazuko Shiroki Toshinori Ide 《Experimental cell research》1987,171(2):509-512
tsJT60 cells, a temperature-sensitive G0 mutant of a Fischer rat cell line, grew normally in an exponential growth phase at both permissive (34 degrees C) and nonpermissive (39.5 degrees C) temperatures, but when stimulated with fetal bovine serum in the growth-arrested state (G0 phase) they entered S phase at 34 degrees C but not at 39.5 degrees C. Infection of G0-arrested tsJT60 cells with SV40, adenovirus (Ad) 5 wild type and its E1B mutant dl313, and Ad12 wild type and its E1B mutants in205B, in205C, dl205, and in206B induced DNA synthesis at both temperatures. The DNA synthesized after virus infection was shown to be cellular by Hirt separation of DNA from SV40-infected cells and by CsCl equilibrium density gradient centrifugation of DNA from Ad5-infected cells. 相似文献
3.
Y Y Tai J Ninomiya-Tsuji K Furuoku N Ogawa S Ishibashi K Shiroki K Segawa N Tsuchida M Shibuya T Ide 《Cell structure and function》1990,15(6):385-391
tsJT60 is a nonlethal temperature-sensitive (ts) mutant of a Fischer rat cell line (3Y1) classified as a G0 mutant; i.e., the ts defect is not expressed within the cell growth cycle but is expressed only between the G0 and S phase. tsJT60 clones transformed with oncogenes such as adenovirus E1A, polyoma large T, polyoma middle T, v-Ki-ras, and LTR activated c-myc, or with a chemical carcinogen N-methyl-N'-nitro-N-nitrosoguanidine, grew well at 34 degrees C. However, most of these clones grew slowly at 40 degrees C, producing many floating dead cells, and some clones were killed at 40 degrees C. When they were cultured under conditions inadequate for growth of untransformed cells, such as high cell density or serum restriction, they were killed at 40 degrees C. These and previous results from SV40- and adenovirus-transformed tsJT60 clones favour the idea that transformed tsJT60 cells occasionally enter the G0 phase and are metabolically imbalanced at 40 degrees C during self-stimulation from the G0 to S phase. We propose that a drug which exclusively block, G0-G1 transition would be cytocidal to transformed cells but cytostatic to normal cells. 相似文献
4.
Kouichi Tanonaka Jun Ninomiya-Tsuji Sadahiko Ishibashi Toshinori Ide 《Experimental cell research》1986,165(2):337-344
Two types of cell-cycle-ts mutants were isolated from Fischer rat cell line, 3Y1, and characterized. Clones in one complementation group, tsJT51 and tsJT341, grew at 34 degrees C in the presence of 10% fetal bovine serum (FBS). When the cells growing at 34 degrees C were transferred to 39.5 degrees C, they were arrested alive in G1/G0 phase in the presence of both FBS and epidermal growth factor (EGF), but died in the presence of one of these growth factors. The cells in the other complementation group, tsJT59, tsJT308, tsJT314 and tsJT349, grew at 34 degrees C in the presence of 10% FBS. When the cells growing at 34 degrees C were transferred to 39.5 degrees C, they were arrested alive in G1/G0 phase in the simultaneous presence of FBS, EGF and insulin, but died quickly if one of these growth factors was lacking. Growth-arrested cells at 39.5 degrees C were viable at least one or two weeks and had a potency to resume growth following the shift-down of temperature. Those are assumed to be ts mutant cells which enter and stay in G1/G0 phase from the cell cycle at the non-permissive temperature only in the presence of appropriate growth factors. 相似文献
5.
The tumour suppressor gene product APC blocks cell cycle progression from G0/G1 to S phase. 总被引:12,自引:0,他引:12 下载免费PDF全文
G H Baeg A Matsumine T Kuroda R N Bhattacharjee I Miyashiro K Toyoshima T Akiyama 《The EMBO journal》1995,14(22):5618-5625
The APC gene is mutated in familial adenomatous polyposis (FAP) as well as in sporadic colorectal tumours. The product of the APC gene is a 300 kDa cytoplasmic protein associated with the adherence junction protein catenin. Here we show that overexpression of APC blocks serum-induced cell cycle progression from G0/G1 to the S phase. Mutant APCs identified in FAP and/or colorectal tumours were less inhibitory and partially obstructed the activity of the normal APC. The cell-cycle blocking activity of APC was alleviated by the overexpression of cyclin E/CDK2 or cyclin D1/CDK4. Consistent with this result, kinase activity of CDK2 was significantly down-regulated in cells overexpressing APC although its synthesis remained unchanged, while CDK4 activity was barely affected. These results suggest that APC may play a role in the regulation of the cell cycle by negatively modulating the activity of cyclin-CDK complexes. 相似文献
6.
7.
The E1B 19-kilodalton protein is not essential for transformation of rodent cells in vitro by adenovirus type 5. 下载免费PDF全文
The newly constructed adenovirus type 5 mutant in1 carries a single AT base pair insertion immediately after nucleotide position 1715 in the E1B gene sequence which destroys the proximal AUG normally present in E1B messages and prevents production of intact E1B 19-kDa protein in infected cells. We have used in1, variants of in1 containing mutant alleles of viral genes known to enhance transformation frequency, and adenovirus type 5 mutant dl337 (S. Pilder, J. Logan, and T. Shenk, J. Virol. 52:664-671, 1984), in which the sequence between nucleotides 1770 and 1916 within the 19-kDa reading frame is deleted, to test the generally accepted hypothesis that this E1B protein is essential for the transformation of rodent cells and maintenance of the transformed phenotype. We find that these mutants transform rat embryo cells, rat kidney and mouse kidney primary cells, and cells of the 3Y1 rat line with decreased frequencies only when virus is added to these various cells at high input multiplicities of infection. In contrast, when lower doses of virus are used, the mutants transform with wild-type frequencies. Cells infected with higher doses of mutant virus show increased levels of DNA degradation and cell killing compared with those of cells infected with the same levels of wild-type virus, and these effects most likely contribute to the decreased transformation frequencies observed. On the basis of these results and the results of phenotypic analyses of numerous transformants, we propose that the E1B 19-kDa protein is not required for induction and/or maintenance of transformed-cell characteristics in rodent cells infected with adenovirus type 5. 相似文献
8.
The efficiency of adenovirus transformation of rodent cells is inversely related to the rate of viral E1A gene expression. 总被引:3,自引:5,他引:3 下载免费PDF全文
While the products of the type 5 adenovirus E1A and E1B genes can initiate pathways leading to a transformed rodent cell, little is known about how the rate of viral early gene expression influences the efficiency of this process. An adenovirus mutant [E1a(r) virus] that expresses its viral E1A and E1B genes at as much as a 100-fold-reduced rate relative to wild-type virus in infected CREF or HeLa cells transforms CREF cells at an 8-fold-higher efficiency than wild-type virus. Additional studies show that the reduction in viral E1A gene expression is solely responsible for this transformation phenotype, and at this low rate of viral E1A gene expression both E1A gene products must be expressed. Unlike previously characterized viruses which transform CREF cells at frequencies greater than wild-type virus, the foci obtained following E1a(r) virus infection were indistinguishable from those arising from wild-type virus by several criteria (morphological characteristics and anchorage-independent growth). Surprisingly, an analysis of viral early gene expression from a panel of wild-type- and E1a(r) virus-transformed CREF cell lines showed similar average rates of both viral E1A and E1B gene expression. By using an adenovirus-transformed cell line that is cold-sensitive for maintenance of the transformed cell phenotype, we show that both wild-type and the E1a(r) viruses can transform these cells at equally high efficiencies at the nonpermissive temperature of 32 degrees C. Our findings suggest that the process leading to a fully transformed cell involves multiple stages, with an early stage being facilitated by a reduced rate of viral E1A gene expression. 相似文献
9.
10.
Bashir Lawal Yu-Cheng Kuo Alexander T. H. Wu Hsu-Shan Huang 《International journal of biological sciences》2021,17(12):3224
Mechanisms of breast cancer progression and invasion, often involve alteration of hormonal signaling, and upregulation and/or activation of signal transduction pathways that input to cell cycle regulation. Herein, we describe a rationally designed first-in-class novel small molecule inhibitor for targeting oncogenic and hormonal signaling in ER-positive breast cancer. BC-N102 treatment exhibits dose-dependent cytotoxic effects against ER+ breast cancer cell lines. BC-N102 exhibited time course- and dose-dependent cell cycle arrest via downregulation of the estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR), phosphatidylinositol 3-kinase (PI3K), phosphorylated (p)-extracellular signal-regulated kinase (ERK), p-Akt, CDK2, and CDK4 while increasing p38 mitogen-activated protein kinase (MAPK), and mineralocorticoid receptor (MR) signaling in breast cancer cell line. In addition, we found that BC-N102 suppressed breast cancer tumorigenesis in vivo and prolonged the survival of animals. Our results suggest that the proper application of BC-N102 may be a beneficial chemotherapeutic strategy for ER+ breast cancer patients. 相似文献
11.
12.
RuLin Huang Chuanqi Liu Rao Fu Yuxin Yan Jing Yang Xinggang Wang Qingfeng Li 《Cell proliferation》2022,55(7)
ObjectivesKeloids are benign fibroproliferative tumors that display many cancer‐like characteristics, such as progressive uncontrolled growth, lack of spontaneous regression, and extremely high rates of recurrence. Polo‐like kinase 4 (PLK4) was recently identified as a master regulator of centriole replication, and its aberrant expression is closely associated with tumorigenesis. This study aimed to investigate the expression and biological role of PLK4 in the pathogenesis of keloids.Materials and MethodsWe evaluated the expression of PLK4 in keloids and adjacent normal skin tissue samples. Then, we established PLK4 knockdown and overexpression cell lines in keloid fibroblasts (KFs) and normal skin fibroblasts (NFs), respectively, to investigate the roles of PLK4 in the regulation of proliferation, migration, invasion, apoptosis, and cell cycle in KFs. Centrinone B (Cen‐B), a highly selective PLK4 inhibitor, was used to inhibit PLK4 activity in KFs to evaluate the therapeutic effect on KFs.ResultsWe discovered that PLK4 was overexpressed in keloid dermal samples and KFs compared with adjacent normal skin samples and NFs derived from the same patients. High PLK4 expression was positively associated with the proliferation, migration, and invasion of KFs. Furthermore, knockdown of PLK4 expression or inhibition of PLK4 activity by Cen‐B suppressed KF growth, induced KF apoptosis via the caspase‐9/3 pathway, and induced cell cycle arrest at the G0/G1 phase in vitro.ConclusionsThese findings demonstrate that PLK4 is a critical regulator of KF proliferation, migration, and invasion, and thus, Cen‐B is a promising candidate drug for keloid treatment.Keloids are benign fibroproliferative tumors that display many cancer‐like characteristics, such as progressive uncontrolled growth, lack of spontaneous regression, and extremely high rates of recurrence. Polo‐like kinase 4 (PLK4) was recently identified as a master regulator of centriole replication, and its aberrant expression is closely associated with tumorigenesis. This study aimed to investigate the expression and biological role of PLK4 in the pathogenesis of keloids. Here, we discovered that PLK4 is a potential target for the treatment of keloids. PLK4 was overexpressed in keloid dermal samples and keloid fibroblasts (KFs) compared with adjacent normal skin samples and normal skin fibroblasts derived from the same patients. High PLK4 expression was positively associated with the proliferation, migration, and invasion of KFs. Furthermore, knockdown of PLK4 expression or inhibition of PLK4 activity by a highly selective inhibitor, centrinone B (Cen‐B), suppressed KF growth, induced KF apoptosis via the caspase‐9/3 pathway, and induced cell cycle arrest at the G0/G1 phase via the p53/p21/Cyclin D1 pathway in vitro. These findings demonstrate that PLK4 is a critical regulator of KF proliferation, migration, and invasion, and thus, Cen‐B is a promising candidate drug for keloid treatment. 相似文献
13.
Folate deficiency contributes to impaired adult hippocampal neurogenesis, yet the mechanisms remain unclear. Here we use HT-22 hippocampal neuron cells as model to investigate the effect of folate deprivation (FD) on cell proliferation and apoptosis, and to elucidate the underlying mechanism. FD caused cell cycle arrest at G0/G1 phase and increased the rate of apoptosis, which was associated with disrupted expression of folate transport and methyl transfer genes. FOLR1 and SLC46A1 were (P < 0.01) down-regulated, while SLC19A1 was up-regulated (P < 0.01) in FD group. FD cells exhibited significantly (P < 0.05) higher protein content of BHMT, MAT2b and DNMT3a, as well as increased SAM/SAH concentrations and global DNA hypermethylation. The expression of the total and all the 3 classes of IGF-1 mRNA variants was significantly (P < 0.01) down-regulated and IGF-1 concentration was decreased (P < 0.05) in the culture media. IGF-1 signaling pathway was also compromised with diminished activation (P < 0.05) of STAT3, AKT and mTOR. CpG hypermethylation was detected in the promoter regions of IGF-1 and FOLR1 genes, while higher SLC19A1 mRNA corresponded to hypomethylation of its promoter. IGF-1 supplementation in FD media significantly abolished FD-induced decrease in cell viability. However, IGF-1 had limited effect in rescuing the cell phenotype when added 24 h after FD. Taken together, down-regulation of IGF-1 expression and signaling is involved in FD-induced cell cycle arrest and apoptosis in HT-22 hippocampal neuron cells, which is associated with an abnormal activation of methyl transfer pathway and hypermethylation of IGF-1 gene promoter. 相似文献
14.
Estela A Pla-Martín D Sánchez-Piris M Sesaki H Palau F 《The Journal of biological chemistry》2011,286(42):36777-36786
Mutations in the GDAP1 gene are responsible of the Charcot-Marie-Tooth CMT4A, ARCMT2K, and CMT2K variants. GDAP1 is a mitochondrial outer membrane protein that has been related to the fission pathway of the mitochondrial network dynamics. As mitochondrial dynamics is a conserved process, we reasoned that expressing GDAP1 in Saccharomyces cerevisiae strains defective for genes involved in mitochondrial fission or fusion could increase our knowledge of GDAP1 function. We discovered a consistent relation between Fis1p and the cell cycle because fis1Δ cells showed G(2)/M delay during cell cycle progression. The fis1Δ phenotype, which includes cell cycle delay, was fully rescued by GDAP1. By contrast, clinical missense mutations rescued the fis1Δ phenotype except for the cell cycle delay. In addition, both Fis1p and human GDAP1 interacted with β-tubulins Tub2p and TUBB, respectively. A defect in the fis1 gene may induce abnormal location of mitochondria during budding mitosis, causing the cell cycle delay at G(2)/M due to its anomalous interaction with microtubules from the mitotic spindle. In the case of neurons harboring defects in GDAP1, the interaction between mitochondria and the microtubule cytoskeleton would be altered, which might affect mitochondrial axonal transport and movement within the cell and may explain the pathophysiology of the GDAP1-related Charcot-Marie-Tooth disease. 相似文献
15.
The effect of sodium butyrate (NaBut) on cell growth was studied in normal rat kidney (NRK) fibroblasts, and in NRK cells stably transfected with either the adenoviral gene E1A (wild-type), or mutated E1A (E1Amut; with a deletion in the CR1 domain), or with the transforming Ha-ras (EJ) gene. The growth of all these cell lines was inhibited by milimolar concentrations of sodium butyrate (NaBut). However, whereas the NRK cells as well as the NRK-E1Amut and NRK-ras cells were arrested in the G1 phase of the cell cycle, the NRK-E1A cells progressively accumulated in the G2 phase, suggesting that the E1A gene expression caused a leaky inhibition of G1 phase progression. The expression of late cell cycle-related genes cdc2 and PCNA (proliferating cell nuclear antigen) was not affected by NaBut in the NRK-E1A cells while it was totally suppressed in the other NRK-derived cell lines. 相似文献
16.
tsJT16 is a cell cycle temperature-sensitive (ts) mutant from a Fischer rat cell line. When it is growth-stimulated from G0 phase it enters S phase at the permissive temperature (34 degrees C) but not at the nonpermissive temperature (40 degrees C). It induces a nuclear labile protein, p70, when it is stimulated from G0 phase at 34 degrees C, but not at 40 degrees C. In growing cell cycle it progresses through the S, G2 and M phases at both temperatures but fails to pass through G1 phase at 40 degrees C. Here we described that p70 was synthesized neither in the randomly growing cycle nor in the G1 phase synchronously progressing from M phase. The cells synchronized at early G1 phase by culturing in serum-free medium for 7.5 h from G1/S boundary induced c-fos and c-myc following serum addition, but under the same condition p70 was not synthesized. These results indicate that the synthesis of p70 is not required for progression of the G1 phase of the growing cycle and can be used as an exclusive marker of G0-S transition. 相似文献
17.
J W Brown L M Prieto C Perez-Stable M Montoya S Cappell L M Fishman 《Hormones et métabolisme》2008,40(5):306-310
The effects of 17 beta-estradiol and progesterone were evaluated separately and in combination, on the growth, survival, and cell cycle dynamics of SW-13 human adrenal carcinoma cells in culture. Both hormones significantly decreased cell survival, with dose response curves at four days demonstrating EC (50)s estimated at 1.2 x 10 (-5) M for 17 beta-estradiol and 4.8 x 10 (-6) M for progesterone. Flow cytometry studies of these cultures indicated a strong G2/M blocking effect of both steroids, either individually or in combination; the effects of progesterone and of both agents together were substantially greater than the effect with 17 beta-estradiol alone. The sub-G1 region of the flow cytometry profile was significantly enhanced by exposure to 17 beta-estradiol and even more by progesterone. Sub-G1 "apoptosis" was confirmed by fragmented and condensed nuclear chromatin staining using a standard DAPI fluorescence assay. The expression of the critical cell cycle regulatory proteins cyclin B1 and D1 were significantly decreased by each hormone, with the influence of progesterone again predominating. These data demonstrate that high doses of 17 beta-estradiol and progesterone have inhibitory and apoptotic effects on SW-13 human adrenal carcinoma cells IN VITRO. The observed effects are associated with declines in cyclin B1 and D1 expression as well as a block in G2/M. 相似文献
18.
Cloonan N Brown MK Steptoe AL Wani S Chan WL Forrest AR Kolle G Gabrielli B Grimmond SM 《Genome biology》2008,9(8):R127-14
Background
MicroRNAs are modifiers of gene expression, acting to reduce translation through either translational repression or mRNA cleavage. Recently, it has been shown that some microRNAs can act to promote or suppress cell transformation, with miR-17-92 described as the first oncogenic microRNA. The association of miR-17-92 encoded microRNAs with a surprisingly broad range of cancers not only underlines the clinical significance of this locus, but also suggests that miR-17-92 may regulate fundamental biological processes, and for these reasons miR-17-92 has been considered as a therapeutic target.Results
In this study, we show that miR-17-92 is a cell cycle regulated locus, and ectopic expression of a single microRNA (miR-17-5p) is sufficient to drive a proliferative signal in HEK293T cells. For the first time, we reveal the mechanism behind this response - miR-17-5p acts specifically at the G1/S-phase cell cycle boundary, by targeting more than 20 genes involved in the transition between these phases. While both pro- and anti-proliferative genes are targeted by miR-17-5p, pro-proliferative mRNAs are specifically up-regulated by secondary and/or tertiary effects in HEK293T cells.Conclusion
The miR-17-5p microRNA is able to act as both an oncogene and a tumor suppressor in different cellular contexts; our model of competing positive and negative signals can explain both of these activities. The coordinated suppression of proliferation-inhibitors allows miR-17-5p to efficiently de-couple negative regulators of the MAPK (mitogen activated protein kinase) signaling cascade, promoting growth in HEK293T cells. Additionally, we have demonstrated the utility of a systems biology approach as a unique and rapid approach to uncover microRNA function. 相似文献19.
Targeted deletion of the Tsg101 gene results in cell cycle arrest at G1/S and p53-independent cell death 总被引:14,自引:0,他引:14
Krempler A Henry MD Triplett AA Wagner KU 《The Journal of biological chemistry》2002,277(45):43216-43223
The tumor susceptibility gene 101 (Tsg101) was originally discovered in a screen for potential tumor suppressors using insertional mutagenesis in immortalized fibroblasts. To investigate essential functions of this gene in cell growth and neoplastic transformation, we derived primary mouse embryonic fibroblasts from Tsg101 conditional knockout mice. Expression of Cre recombinase from a retroviral vector efficiently down-regulated Tsg101. The deletion of Tsg101 caused growth arrest and cell death but did not result in increased proliferation and cellular transformation. Inactivation of p53 had no influence on the deleterious phenotype, but Tsg101(-/-) cells were rescued through expression of exogenous Tsg101. Fluorescence-activated cell sorting, proliferation assays, and Western blot analysis of crucial regulators of the cell cycle revealed that Tsg101 deficiency resulted in growth arrest at the G(1)/S transition through inactivation of cyclin-dependent kinase 2. As a consequence, DNA replication was not initiated in Tsg101-deficient cells. Our results clearly demonstrate that Tsg101 is not a primary tumor suppressor in mouse embryonic fibroblasts. However, the protein is crucial for cell proliferation and cell survival. 相似文献
20.
The ccl mutation in Paramecium tetraurelia reversibly and rapidly blocks cell cycle progression and DNA synthesis at the restrictive temperature. Progression through the cell cycle is blocked during both the G1 and S portions of the cell cycle, while at the restrictive temperature there is neither residual cell cycle progression nor induction of excess delay of subsequent cell cycle events. DNA synthesis activity is reduced to 50% of the normal level in about 5 min and is completely blocked at 30 min after a shift to restrictive temperature. On return to permissive conditions, DNA synthesis is reactivated with similar kinetics. 相似文献