首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Omega 3 polyunsaturated fatty acids are promoted as beneficial in the prevention of metabolic and cardiovascular diseases. In general, dietary omega 3 fatty acids are derived from plant sources as linolenic acid (LNA, C18:3 omega3) the precursor to eicosapentaenoic acid (EPA, C20:5 omega3) and docosahexaenoic acid (DHA, C22:6 omega3). However, it remains unclear if the polyunsaturated fatty acid (PUFA) LNA can provide the same health benefits as the very long chain highly unsaturated fatty acids (HUFA) EPA and DHA generally derived from oily fish. In this study, mice were fed synthetic diets containing lard (low in PUFA and HUFA), canola oil (to supply PUFA), or a mixture of menhaden and arasco (fish and fungal) oils (to supply HUFA) for 8 weeks. The diets were neither high in calories nor fat, which was supplied at 6%. The lard and canola oil diets resulted in high levels of hepatic triglycerides and cholesterol and elevation of lipogenic gene expression. By comparison livers from mice fed the fish/fungal oil diet had low levels of lipid accumulation and more closely resembled livers from mice fed standard laboratory chow. SREBP1c and PPARgamma gene and protein expression were high in livers of animals fed diets containing lard or canola oil compared with fish/fungal oil. Hepatic fatty acid analyses indicated that dietary PUFA were efficiently converted to HUFA regardless of source. Therefore, differences in hepatic lipid levels and gene expression between dietary groups were due to exogenous fatty acid supplied rather than endogenous pools. These results have important implications for understanding the regulation of hepatic lipogenesis by dietary fatty acids.  相似文献   

5.
The class of long chain polyunsaturated fatty acids known as omega-3 are believed to be involved in prevention of a number of human afflictions. The mode of action for two of the most common omega-3 fatty acids, linolenic 18:3 delta 9,12,15 and docosahexaenoic 22:6 delta 4,7,10,13,16,19 (DHA), is not known. One suggestion is that they may be incorporated into membranes and there provide some specific function. Here we compare the effects of DHA and its metabolic precursor linolenic acid on the membrane properties of fluidity, fusion and permeability. The fatty acids were investigated as both free fatty acids and mixed chain 18:0, 18:3 and 18:0, 22:6 phosphatidylcholines (PCs). Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) and a series of anthracene stearic acid probes indicates 20 mol% incorporation of either fatty acid into dipalmitoylphosphatidylcholine bilayers broadens and depresses the temperature of the phase transition, but has almost no effect on fluidity in the liquid crystalline state. Similar fluidity was also observed in the liquid crystalline bilayers of the mixed chain PCs using the same set of fluorescent fatty acid probes. In contrast, DHA as a free fatty acid or as part of a mixed chain PC, causes a much greater enhancement than linolenic acid of the rates of fusion and permeability as monitored by fluorescence resonance energy transfer and aqueous compartment mixing (fusion) and by lipid vesicle swelling in isotonic erythritol, (permeability). These experiments establish a clear distinction between the effects of linolenic acid and DHA in membranes.  相似文献   

6.
1. Benzoic acid and p-nitrobenzoic acid were converted in the scorpion Palamnaeus into N(1)-benzoylagmatine and N(1)-p-nitrobenzoylagmatine. 2. Some benzoyl- and p-nitrobenzoyl-arginine were also formed and these compounds were probable precursors of the agmatine derivatives. 3. p-Nitrobenzoyl- and p-aminobenzoyl-arginine were formed in millipedes dosed with the aromatic acids. 4. Woodlice excreted p-amino- and p-nitro-benzoic acid as their glycine conjugates and no conjugation could be found in the crab Gecarcinus and a freshwater crayfish Astacus.  相似文献   

7.
8.
Incorporation of exogenous [14C] arachidonate by human skin fibroblasts was found to be significantly greater than that of either [14C]linoleate or alpha-[14C] linolenate. Arachidonate was preferentially esterified in the PI + PS and PE classes of phospholipids. Over 40% of the incorporated [14C] arachidonate was chain elongated in 24 hours. Cells were also grown in lipid-free medium to enhance PUFA desaturation and elongation and the utilization of various omega 6 and omega 3 metabolites examined. Whereas [14C] linoleate partitioned approximately 50:50 between PL and TAG, eicosatrienoate (20:3 omega 6) was selectively sequestered in TAG. Arachidonate and docosatetraenoate (22:4 omega 6) were preferentially incorporated into phospholipids; the PI + PS fraction was most highly enriched with arachidonate. Modification of alpha-[14C] linolenate was more extensive than that of [14C] linoleate. Docosapentaenoate (22:5 omega 3) was the major omega 3 [14C] PUFA of PI + PS and PE. Eicosapentaeonate was not selectively incorporated into phospholipids; within phospholipids the 20:5 omega 3 was primarily in PC. These results indicate that human skin fibroblasts exhibit acyl specificity in the esterification of polyunsaturated fatty acids, including preferential utilization of arachidonate rather than other prostaglandin precursors in the PI + PS fraction.  相似文献   

9.
10.
We assessed – by a lipidomic approach – the differential incorporation of EPA and DHA into hepatic lipids, after prolonged feeding of rats with fish oil. We also evaluated their effect on lipogenesis and its related enzymes. Rats were administered 100 mg/kg/d fish oil, by oral gavage, for 30 days. The fatty acid profile of total liver lipids was determined by gas–liquid chromatography coupled to mass spectrometry. Individual phospholipid classes and their molecular species were quantified by ESI-MS/MS. Omega 3 fatty acids readily incorporated into hepatic phospholipids, decreased stearoyl-CoA desaturase 16, stearoyl-CoA desaturase, delta 6 desaturase, and delta 5 desaturase activities (calculated as product/substrate ratio) and decreased the “lipogenesis index”, i.e., the proportion of fatty acids endogenously synthesized in the liver and not provided with the diet. Our results show that long-chain omega 3 fatty acids selectively incorporate into hepatic phospholipids, inhibit de novo lipogenesis and change the hepatic fatty acid profile via reduced desaturases' activity in the non-steatotic liver. In addition to corroborating advice to consume adequate amounts of omega 3 fatty acids for overall health, these data contribute mechanistic insights to the clinical observations that provision of omega 3 fatty acids decreases hepatic fat and ameliorates NAFLD prognosis.  相似文献   

11.
12.
13.
14.
Human liver microsomes and recombinant human P450 have been used as enzyme source in order to better understand the requirement for the optimal rate of omega and (omega;-1)-hydroxylations of fatty acids by cytochromes P450 2E1 and 4A. Three parameters were studied: alkyl chain length, presence and configuration of double bond(s) in the alkyl chain, and involvement of carboxylic function in the fatty acid binding inside the access channel of P450 active site. The total rate of metabolite formation decreased when increasing the alkyl chain length of saturated fatty acids (from C12 to C16), while no hydroxylated metabolite was detected when liver microsomes were incubated with stearic acid. However, unsaturated fatty acids, such as oleic, elaidic and linoleic acids, were omega and (omega;-1)-hydroxylated with an efficiency at least similar to palmitic acid. The (omega;-1)/omega ratio decreased from 2.8 to 1 with lauric, myristic and palmitic acids as substrates, while the reverse was observed for unsaturated C18 fatty acids which are mainly omega-hydroxylated, except for elaidic acid showing a metabolic profile quite similar to those of saturated fatty acids. The double bond configuration did not significantly modify the ability of hydroxylation of fatty acid, while the negatively charged carboxylic group allowed a configuration energetically favourable for omega and (omega;-1)-hydroxylation inside the access channel of active site.  相似文献   

15.
16.
The ability of derivatives of the essential fatty acids linoleic acid (C18:2, omega 6) and alpha-linolenic acid (C18:3, omega 3) to stimulate rates of protein synthesis and degradation was investigated in isolated intact muscles from fasted rabbits. Both omega 6 derivatives examined, arachidonic acid (C20:4, omega 6) and dihomo-gamma-linolenic acid (C20:3, omega 6), when added at concentrations up to 1 microM, stimulated the rate of protein synthesis and the release of prostaglandin F2 alpha (PGF2 alpha). Metabolites of the omega 6 series, namely eicosapentaenoic acid (C20:5, omega 3) and docosahexaenoic acid (C22:6, omega 3), were without effect on the rate of protein synthesis and resulted in a decrease in the release of PGF2 alpha. None of the fatty acids had a significant effect on the rate of protein degradation. Although insulin (100 mu units/ml) also stimulated rates of protein synthesis when added alone, none of the omega 3 or omega 6 fatty acids, when added with insulin at concentrations of 0.2 microM, potentiated the effect of the hormone.  相似文献   

17.
18.
19.
Presently an insufficient supply of long-chain polyunsaturated omega3 fatty acid is prevalent in Western populations leading to potential metabolic consequences. Based on this fact, this study deals mainly with various aspects of lipid metabolism in second generation female omega3-depleted rats. The parametrial fat and body weights were higher in omega3-depleted than control animals. This coincided with liver steatosis but did not alter heart triglyceride/phospholipid ratio. The net uptake of [U-14C] palmitate by adipocytes was also higher in omega3-depleted rats than in control animals. The uptake of D-[U- 4C] glucose or [1,2 (-14)C] acetate by adipocytes was lower, however in omega3-depleted than control animals and was unaffected by insulin in the former as distinct from latter animals. Despite comparable basal lipolysis, the increase in glycerol output from adipocytes provoked by theophylline was higher in omega3-depleted than control rats. The fatty acid pattern of lipids in adipose tissue was characterized in the omega3-depleted rats by a much lower omega3 content, higher apparent Delta 9-saturase and elongase activities, lower efficiency for the conversion of C18:2omega6 to C20:4omega6 and higher efficiency for the conversion of C18:3omega3 to C20:5omega3. These features were compared to those prevailing in liver and plasma lipids. The present study thus extends knowledge on the alteration of lipid metabolism resulting from a deficiency in long-chain polyunsaturated omega3 fatty acids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号