首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This experiment determined if the degree of stimulation of the pituitary gland by GnRH affects the suppressive actions of inhibin and testosterone on gonadotropin secretion in rams. Two groups (n = 5) of castrated adult rams underwent hypothalamopituitary disconnection and were given two i.v. injections of vehicle or 0.64 microg/kg of recombinant human inhibin A (rh-inhibin) 6 h apart when treated with i.m. injections of oil and testosterone propionate every 12 h for at least 7 days. Each treatment was administered when the rams were infused i.v. with 125 ng of GnRH every 4 h (i.e., slow-pulse frequency) and 125 ng of GnRH every hour (i.e., fast-pulse frequency). The FSH concentrations and LH pulse amplitude were lower and the LH concentrations higher during the fast GnRH pulse frequency. The GnRH pulse frequency did not influence the ability of rh-inhibin and testosterone to suppress FSH secretion. Testosterone did not affect LH secretion. Following rh-inhibin treatment, LH pulse amplitude decreased at the slow, but not at the fast, GnRH pulse frequency, and LH concentrations decreased at both GnRH pulse frequencies. We conclude that the degree of stimulation of the pituitary by GnRH does not influence the ability of inhibin or testosterone to suppress FSH secretion in rams. Inhibin may be capable of suppressing LH secretion under conditions of low GnRH.  相似文献   

2.

Background  

Inhibins are dimeric gonadal protein hormones that negatively regulate pituitary FSH synthesis and secretion. Inhibin B is produced by testicular Sertoli cells and is the primary circulating form of inhibin in most adult male mammals. Inhibin B is comprised of the inhibin alpha subunit disulfide-linked to the inhibin/activin betaB subunit. Here we describe the cloning of the cDNAs encoding these subunits from adult rhesus monkey testis RNA.  相似文献   

3.
In the adult male, the testes produce both sperm and testosterone. The function of the testicles is directed by the central nervous system and pituitary gland. Precise regulation of testicular function is conferred by an elegant feedback loop in which the secretion of pituitary gonadotropins is stimulated by gonadotropin hormone-releasing hormone (GnRH) from the hypothalamus and modulated by testicular hormones. Testosterone and its metabolites estradiol and dihydrotestosterone (DHT) as well as inhibin B inhibit the secretion of the gonadotropins both directly at the pituitary and centrally at the level of the hypothalamus. In the testes, LH stimulates testosterone synthesis and FSH promotes spermatogenesis, but the exact details of gonadotropin action are incompletely understood. A primary goal of research into understanding the hormonal regulation of testicular function is the development of reversible, safe and effective male hormonal contraceptives. The administration of exogenous testosterone suppresses pituitary gonadotropins and hence spermatogenesis in most, but not all, men. The addition of a second agent such as a progestin or a GnRH antagonist yields more complete gonadotropin suppression; such combination regimens effectively suppress spermatogenesis in almost all men and may soon bring the promise of hormonal male contraception to fruition.  相似文献   

4.
The timed secretion of the luteinizing hormone (LH) and follicle stimulating hormone (FSH) from pituitary gonadotrophs during the estrous cycle is crucial for normal reproductive functioning. The release of LH and FSH is stimulated by gonadotropin releasing hormone (GnRH) secreted by hypothalamic GnRH neurons. It is controlled by the frequency of the GnRH signal that varies during the estrous cycle. Curiously, the secretion of LH and FSH is differentially regulated by the frequency of GnRH pulses. LH secretion increases as the frequency increases within a physiological range, and FSH secretion shows a biphasic response, with a peak at a lower frequency. There is considerable experimental evidence that one key factor in these differential responses is the autocrine/paracrine actions of the pituitary polypeptides activin and follistatin. Based on these data, we develop a mathematical model that incorporates the dynamics of these polypeptides. We show that a model that incorporates the actions of activin and follistatin is sufficient to generate the differential responses of LH and FSH secretion to changes in the frequency of GnRH pulses. In addition, it shows that the actions of these polypeptides, along with the ovarian polypeptide inhibin and the estrogen-mediated variations in the frequency of GnRH pulses, are sufficient to account for the time courses of LH and FSH plasma levels during the rat estrous cycle. That is, a single peak of LH on the afternoon of proestrus and a double peak of FSH on proestrus and early estrus. We also use the model to identify which regulation pathways are indispensable for the differential regulation of LH and FSH and their time courses during the estrous cycle. We conclude that the actions of activin, inhibin, and follistatin are consistent with LH/FSH secretion patterns, and likely complement other factors in the production of the characteristic secretion patterns in female rats.  相似文献   

5.
Seasonal cycles in testicular activity in rams were monitored in groups of wild (mouflon), feral (Soay) and domesticated breeds of sheep (Shetland, Blackface, Herdwick, Norfolk, Wiltshire, Portland and Merino) living outdoors near Edinburgh (56 degrees N). The changes in the blood plasma concentrations of FSH, inhibin and testosterone, and the diameter of the testis were measured every half calendar month from 1 to 3 years of age. There were significant differences between breeds in the magnitude and timing of the seasonal reproductive cycle. In the mouflon rams, the seasonal changes were very pronounced with a 6-15-fold increase in the plasma concentrations of FSH, inhibin and testosterone from summer to autumn, and a late peak in testicular diameter in October. In the Soay rams and most of the domesticated breeds, the seasonal increase in the reproductive hormones occurred 1-2 months earlier with the peak in testicular size in September or October. In the two southern breeds (Portland and Merino), the early onset of testicular activity was more extreme with the seasonal maximum in August. In cross-bred rams, produced by mating Soay ewes (highly seasonal breed) with Portland or Merino rams (less seasonal breeds), there was a seasonal reproductive cycle that was intermediate compared to that of the parents. A comparison between all 11 breeds showed a significant correlation between the timing of the seasonal cycle in plasma FSH concentration and testicular diameter (time of peak FSH vs testis, r = 0.95). The overall results in the rams are consistent with a primary role of FSH in dictating the seasonal cycle in testicular size and the secretion of inhibin. The earlier seasonal onset in the testicular cycle in the southern breeds of domesticated sheep, and the differences from the wild type, are taken to represent the effects of genetic selection for a longer mating season.  相似文献   

6.
Effects of GnRH, administered via the testicular artery, on testicular steroidogenesis were studied in rams during the non-breeding season. Concentrations of testosterone and 17-hydroxyprogesterone in testicular venous blood showed similar profiles which were identical for GnRH-treated (0.5 ng infused over 60 min or 25 ng injected) and control testes. Increases of testicular venous concentration of both hormones were only marginally reflected in peripheral venous concentrations. Peripheral administration of hCG (200 i.u., i.v.) stimulated testosterone secretion to a larger extent than 17-hydroxyprogesterone secretion in 10/11 rams, GnRH-treated and control testes showing identical responses. High testicular venous concentrations of both hormones after administration of GnRH were paralleled by increased concentrations of endogenous LH. These LH peaks were evoked by 25 ng GnRH in 7/8 rams. The observed effects of GnRH treatment on testicular steroid secretion thus cannot be considered to be the result of direct stimulation of steroidogenesis by GnRH.  相似文献   

7.
It is well established in many mammalian species, including the horse that normal testicular function is dependent upon a functional hypothalamic-pituitary-testicular (HPT) axis, which involves classic feedback mechanisms. The major HPT hormones involved in the stallion are gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T), estrogens (Es) and inhibin (INH). Although prolactin (PRL) fluctuates with season in the stallion and both PRL and thyroid hormone (TH) affect reproduction in other male species, their effects on stallion reproduction have not been elucidated. Growth hormone (GH) in the stallion may be involved in sperm motility, production and secretion of insulin-like growth factor-1 (IGF-1) and LH-induced testosterone release. The action of these hormones and the products involved for normal spermatogenesis require cell to cell communication within the testis. The somatic cell types, Leydig, Sertoli and peritubular myoid cells, all support germ cell development, maturation and release into the seminiferous tubule lumen. The cell to cell crosstalk involves an intricate network of paracrine-autocrine systems that support the endocrine input to modulate cell function. In other male species, researchers have demonstrated the reproductive effects of such paracrine-autocrine factors as IGF-1, transferrin, androgens, estrogens, inhibin, insulin like peptide 3 (INSL3), beta-endorphin and oxytocin. The specific nature and relative contribution of these various factors on testicular function in fertile and subfertile stallions are under investigation. This review summarizes current information regarding the nature of the multiple endocrine-paracrine-autocrine systems that may be necessary for normal testicular function in the stallion.  相似文献   

8.
The potential of GnRH analogues for regulating testicular function is reviewed. Our experiments showed that constant infusion of GnRH agonists effectively suppressed testicular function in monkeys. In men, however, spermatogenesis could not be suppressed to achieve azoospermia uniformly. GnRH antagonists, although at much higher dosages than agonists, caused a more rapid and uniform inhibition of testis function. Spermatogenesis was reversibly disrupted at the spermatogonial level. Concomitant testosterone supplementation, used to maintain libido and potency, attenuated the antitesticular effects of GnRH analogues. In monkeys testosterone appears to stimulate spermatogenesis directly on the testicular level, while evidence has been obtained that in rats testosterone can also stimulate the release and synthesis of FSH under antagonist mediated blockage of pituitary GnRH receptors. When extrapolating to human studies special care has to be exerted in the selection of testosterone substitution regimens. Although the agonistic and antagonistic analogues of GnRH ultimately exert their antireproductive effects via inhibition of gonadotropin secretion the antagonists may have the greater potential for male fertility regulation due to quicker pituitary and testicular suppression.  相似文献   

9.
The current dogma is that the differential regulation of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) synthesis and secretion is modulated by gonadotropin-releasing hormone (GnRH) pulse frequency and by changes in inhibins, activins, and follistatins both at the pituitary and at the peripheral level. To date no studies have looked at the overlapping function of these regulators in a combined setting. We tested the hypothesis that changes in GnRH pulse frequency alter the relative abundance of these regulators at the pituitary and peripheral levels in a manner consistent with changes in pituitary and circulating concentrations of FSH; that is, an increase in FSH will be accompanied by increased stimulatory input (activin) and/or reduced follistatin and inhibin. Ovariectomized ewes were subjected to a combination hypothalamic pituitary disconnection (HPD)-hypophyseal portal blood collection procedure. Hypophyseal portal and jugular blood samples were collected for a 6-h period from non-HPD ewes, HPD ewes, or HPD ewes administered GnRH hourly or every 3 h for 4 days. In the absence of endogenous hypothalamic and ovarian hormones that regulate gonadotropin secretion, 3-hourly pulses of GnRH increased pituitary content of FSH more than hourly GnRH, although these differences were not evident in the peripheral circulation. The results failed to support the hypothesis in that the preferential increase of pituitary content of FSH by the lower GnRH pulse frequency could be explained by changes in the pituitary content of inhibin A, follistatin, or activin B. Perhaps the effects of GnRH pulse frequency on FSH is due to changes in the balance of free versus bound amounts of these FSH regulatory proteins or to the involvement of other regulators not monitored in this study.  相似文献   

10.
The actions of two inhibin preparations and cycloheximide on gonadotropin release were investigated in superfused pituitary cell cultures. Pituitary cells isolated from 18-day-old male rats were grown in Matrigel-coated superfusion chambers in chemically defined medium. After stationary culture for 4 days, the cell monolayers were superfused at a constant speed (0.25 ml/min) and were intermittently stimulated (6 min/h) with 10 nM gonadotropin-releasing hormone (GnRH). Groups of cultures were exposed to the test substances for varying time periods during stationary culture and/or during superfusion. Inhibitory effects of both inhibin preparations on the secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in response to GnRH pulses were observed after 2 h of exposure and became maximal after about 6 h. Basal secretion of FSH between GnRH pulses was also suppressed, whereas the basal interpulse secretion of LH was not changed. When exposure to inhibin was discontinued, the secretion of both FSH and LH progressively increased and returned to control values by approximately 6 h. Cycloheximide (500 ng/ml) affected gonadotropin release with dynamics similar to those observed for the inhibin preparation. These data support the hypothesis that inhibition of gonadotropin synthesis may be an important step in the molecular mechanism of action by which inhibin regulates gonadotropin release.  相似文献   

11.
Estradiol (E(2)) acts as a potent feedback molecule between the ovary and hypothalamic GnRH neurons, and exerts both positive and negative regulatory actions on GnRH synthesis and secretion. However, the extent to which these actions are mediated by estrogen receptors (ERs) expressed in GnRH neurons has been controversial. In this study, Single-cell RT-PCR revealed the expression of both ERalpha and ERbeta isoforms in cultured fetal and adult rat hypothalamic GnRH neurons. Both ERalpha and ERbeta or individual ERs were expressed in 94% of cultured fetal GnRH neurons. In adult female rats at diestrus, 68% of GnRH neurons expressed ERs, followed by 54% in estrus and 19% in proestrus. Expression of individual ERs was found in 24% of adult male GnRH neurons. ERalpha exerted marked G(i)-mediated inhibitory effects on spontaneous action potential (AP) firing, cAMP production, and pulsatile GnRH secretion, indicating its capacity for negative regulation of GnRH neuronal function. In contrast, increased E(2) concentration and ERbeta agonists increase the rate of AP firing, GnRH secretion, and cAMP production, consistent with ERbeta-dependent positive regulation of GnRH secretion. Consonant with the coupling of ERalpha to pertussis toxin-sensitive G(i/o) proteins, E(2) also activates G protein-activated inwardly rectifying potassium channels, decreasing membrane excitability and slowing the firing of spontaneous APs in hypothalamic GnRH neurons. These findings demonstrate that the dual actions of E(2) on GnRH neuronal membrane excitability, cAMP production, and GnRH secretion are mediated by the dose-dependent activation of ERalpha and ERbeta expressed in hypothalamic GnRH neurons.  相似文献   

12.
Human placenta produces a large variety of bioactive substances with endocrine and neural competence: pituitary and gonadal hormones, hypothalamic-like releasing or inhibiting hormones, growth factors, cytokines and neuropeptides. The most recent findings indicate that locally produced hormones regulate the secretion of other placental hormones supporting a paracrine/autocrine regulation. In placental endocrinology, a particular relevance is played by steroid hormones. In fact, a specific gonadotropin-releasing hormone (GnRH)-human chorionic gonadotropin (hCG) regulation of placental steroidogenesis has been proposed as a placental internal regulatory system acting on steroids production from human placenta. In addition, activin and inhibin have been proposed as further regulatory substances of the synthesis and secretion of steroids; the addition of activin A to placental culture augments GnRH, hCG and progesterone, and this effect can be significantly reduced by the addition of inhibins. Finally, a steroid-steroid interaction is suggested by the evidence that placental estrogen has a positive role in the regulation of progesterone biosynthesis. Other steroid-protein interactions have been observed in human placenta. In fact, recent data indicate that progesterone inhibits placental corticotropin-releasing factor (CRF) and estrogens act on placental conversion of cortisol to cortisone, activating cortisol secretion by the fetal adrenal and enhancing fetal adrenal function with advancing gestation.  相似文献   

13.
The feedback effects of dihydrotestosterone (DHT) on gonadotropin secretion in rams were investigated using DHT-implanted castrate rams (wethers) infused with intermittent pulsatile luteinizing hormone-releasing hormone (LHRH) for 14 days. Castration, as anticipated, reduced both serum testosterone and DHT but elevated serum LH and follicle-stimulating hormone (FSH). Dihydrotestosterone implants raised serum DHT in wethers to intact ram levels and blocked the LH and FSH response to castration. The secretory profile of these individuals failed to show an endogenous LH pulse during any of the scheduled blood sampling periods, but a small LH pulse was observed following a 5-ng/kg LHRH challenge injection. Dihydrotestosterone-implanted wethers given repeated LHRH injections beginning at the time of castration increased serum FSH and yielded LH pulses that were temporally coupled to exogenous LHRH administration. While the frequency of these secretory episodes was comparable to that observed for castrates, amplitudes of the induced LH pulses were blunted relative to those observed for similarly infused, testosterone-implanted castrates. Dihydrotestosterone was also shown to inhibit LH and FSH secretion and serum testosterone concentrations in intact rams. In summary, it appears that DHT may normally participate in feedback regulation of LH and FSH secretion in rams. These data suggest androgen feedback is regulated by deceleration of the hypothalamic LHRH pulse generator and direct actions at the level of the adenohypophysis.  相似文献   

14.
Testosterone shows circadian rhythms in monkeys with low serum levels in the morning hours. The decline relies on a diminished frequency of LH pulses. Inhibin B shows no diurnal patterns. In elderly men, the diurnal rhythm of testosterone is blunted and inhibin levels fall. Here we explore whether aging exerts similar effects in the rhesus monkey. We collected blood samples from groups of young (6-9 yr) and old (12-16 yr) male rhesus monkeys at 20-min intervals for a period of 24 h under remote sampling via a venous catheter. We determined moment-to-moment changes in plasma levels of testosterone, FSH, and LH by RIA, and of inhibin B by ELISA. We found significant diurnal patterns of testosterone in both groups. The circadian rhythm in testosterone was enhanced in older monkeys. Testosterone levels and pulse frequencies dropped significantly below those of young monkeys during midday hours. Diminished pulse frequency of LH appeared to be responsible for the midday testosterone decrease in old monkeys, while LH and testosterone pulse frequency did not change in young monkeys at corresponding time points. Old monkeys showed extended periods of LH-pulse quiescence in the morning and midday hours. Inhibin B and FSH levels were generally lower in old monkeys compared with the young group, but neither inhibin B nor FSH showed circadian rhythms. We conclude from these data that old rhesus monkeys have a more prominent circadian rhythm of LH and testosterone resulting from an extended midday period of quiescence in the hypothalamus-pituitary-gonadal axis.  相似文献   

15.
Price CA 《Theriogenology》1994,41(2):471-482
The hypothesis that testosterone and inhibin interact in the control of FSH secretion in rams was tested. Adult rams were castrated and were simultaneously given testosterone implants and 3-times daily sc injections of 0, 0.4, 0.8 or 1.6 ml charcoal-treated bovine follicular fluid (bFF). After 1 wk, the implants were removed, and the bFF injections continued as before. Blood samples were taken daily for mean LH, FSH and testosterone concentrations, and every 10 min for 12 h in the presence and in the absence of testosterone for assessment of pulsatile LH release. The bFF specifically inhibited FSH secretion from rat pituitary cells in culture. In the presence of testosterone, there were no main effects of bFF on mean plasma FSH or LH concentrations, nor were these values different from their pre-treatment means (P>0.05). Treatment with bFF did not affect LH pulse frequency or amplitude, but the number of rams showing LH pulses was reduced in the 0.8 and 1.6-ml dose groups (P<0.05). Removal of testosterone increased (P<0.05) both gonadotropins. In the absence of testosterone, no main effect of bFF on mean LH or FSH concentrations was observed, although the 1.6-ml dose suppressed the postcastration rise of both LH and FSH. These data suggest that inhibin does not interact with testosterone and that a physiological level of testosterone is sufficient for the regulation of FSH secretion in adult rams.  相似文献   

16.
Developmental patterns in immunoactive inhibin and FSH concentrations in peripheral blood were determined for Suffolk and DLS (Dorset x Leicester x Suffolk) rams born in January Blood samples were taken every 3 to 4 wk when testes were developing during puberty (5 to 44 wk of age) and redeveloping in early adulthood (17 to 23 months of age). Suffolk lambs had a greater average daily gain (195 vs. 143 g/day, P<0.01), and they developed larger testes (P<0.01) than DLS lambs. Inhibin and FSH concentrations peaked at about the same pubertal (8 wk) and early adult (19 or 20 months) ages in both breeds. Elevations in FSH were greater (P< 0.05) in Suffolk than DLS rams at each stage of development. The pubertal inhibin peak was nearly 70% larger (P<0.01) in DLS than Suffolk rams, and the early adult peak was comparable in rams of both breeds, but much smaller (P<0.01) than the pubertal peak. Nonetheless, inhibin was positively correlated (r=0.48 to 0.57) with FSH in both breeds during each developmental stage. Inhibin and testicular size were negatively correlated in Suffolk (r=-0.74) and DLS (r=-0.86) rams during puberty, and positively correlated in DLS rams (r=0.46) in early adulthood. We conclude that 1) inhibin concentrations are higher in juvenile rams at the time Sertoli cell numbers are being established than in adult rams during testicular recrudescence and 2) rises in FSH concentration participate in regulating corresponding rises in inhibin concentration in both stages of testicular development.  相似文献   

17.
Secretory dynamics of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were measured at various times following gonadectomy in adult male grass frogs, Rana pipiens. Plasma levels and in vitro initial secretory rates of both LH and FSH increased significantly within 1 wk and remained elevated for 3-4 wk of castration. Pituitary FSH and LH content were unchanged. However, dissociation between the two gonadotropins (Gth) occurred thereafter: Secretion of FSH remained elevated for 70 days, but those of LH declined to control levels after 30 days. In vitro secretion of Gth from gonadectomized (gonadx) frogs declined progressively over time reaching control levels after 24 h incubation. The results indicate that elevated pituitary secretion contributes to the observed circulating LH and FSH levels in gonadx frogs, and that FSH and LH may be controlled independently. Replacement therapy with 17 beta-estradiol (E2) suppressed post-gonadectomy increases in plasma Gth and in vitro responses to GnRH, whereas 5 alpha-dihydrotestosterone (DHT) had little effect in vivo and augmented GnRH responses in long-term castrates. In vitro, E2 also inhibited, while 48 h of DHT treatment had no effect on GnRH responsiveness of pituitaries from gonadx frogs. The actions of these steroids were opposite to those typically observed in mammals (and birds), and support the hypothesis that E2 may contribute to seasonal testicular regression in ranid frogs.  相似文献   

18.
Experiments were performed to study the responsiveness of the pituitary to gonadotropin-releasing hormone (GnRH) during the dynamic changes in gonadotropin secretion associated with the estrogen-induced luteinizing hormone (LH) surge in the ovariectomized (OVX) rhesus monkey. Silastic capsules filled with estradiol-17-beta were implanted subcutaneously in ovariectomized rhesus monkeys, resulting in an initial lowering of circulating LH and follicle-stimulating hormone (FSH) concentrations followed by an LH-FSH surge. GnRH was injected intravenously just before estrogen implantation, during the negative feedback response and during the rising, the peak, and the declining phases of the LH surge. The LH and FSH responses during the negative feedback phase were as large as those before estrogen treatment (control responses). During the rising phase of the LH surge, the acute response to GnRH injection did not differ significantly from the control response, but the responses 60 and 120 min after injection were somewhat increased. During the declining phase of the LH surge, the pituitary was not responsive to exogenous GnRH, although LH probably continued to be secreted at this time since the LH surge decreased more slowly than predicted by the normal rate of disappearance of LH in the monkey. We conclude that an increased duration of response to GnRH may be an important part of the mechanism by which estrogen induces the LH surge, but we do not see evidence of increased sensitivity of the pituitary to GnRH as an acute releasing factor at that time.  相似文献   

19.
The isolation and physiology of inhibin and related proteins   总被引:5,自引:0,他引:5  
Inhibin, a glycoprotein that preferentially suppresses follicle-stimulating hormone (FSH) secretion, has been isolated from follicular fluid as a heterodimer of two dissimilar subunits linked by disulphide bonds. The larger subunit is termed alpha and the smaller is designated beta. Two forms of inhibin termed A and B have been isolated, the differences being due to variations in the amino acid sequence of the beta-subunit; Inhibin A consists of alpha-beta and Inhibin B of alpha-beta B. Dimers of the beta-subunit, termed activins, have also been found in follicular fluid; these stimulate pituitary FSH secretion. Inhibin is produced in the female by the granulosa cell and corpus luteum under the control of FSH and luteinizing hormone (LH), respectively. The levels in serum rise to peak at mid-cycle and in the mid-luteal phase of the human menstrual cycle, and decline prior to menstruation. In pregnancy, the late-luteal phase decline in inhibin does not occur and the levels increase slowly. Studies suggest that the levels in pregnancy arise from an embryonic source, particularly the placenta. In the male, inhibin is produced by the Sertoli cells under the control of FSH by mechanisms involving cyclic adenosine 3', 5'-monophosphate. Testosterone exerts a minor inhibitory control at supraphysiological levels (10(-5) M), but human chorionic gonadotropin stimulation results paradoxically in a rise in serum inhibin levels. Disruption of spermatogenesis in the rat by cryptorchidism, heat treatment, or efferent duct ligation results in a decline in inhibin levels and a rise in FSH levels, findings consistent with the negative feedback action of inhibin on FSH secretion. As well as their roles in the reproductive system, inhibin and activin have more widespread actions in the haemopoietic, immune and nervous systems as evidenced by the finding of mRNA for its subunits in a range of tissues. Other studies have shown actions on erythroid differentiation and on mitotic activity in thymocytes. These actions suggest that inhibin and activin may function as growth factors as well as regulators of FSH.  相似文献   

20.
Treatment of GnRH-deficient (hpg) female mice with oestradiol-17 beta (E2) for 7 days increased GnRH receptors from 4.1 +/- 0.4 fmol/pituitary (control) to 7.2 +/- 0.7 fmol/pituitary (GnRH-treated), and consistently increased pituitary FSH content. Treatment of hpg female mice with E2 plus progesterone (P) for 14 days stimulated GnRH receptors more than did E2 alone, although values still remained lower than those of normal intact female mice. In contrast, GnRH treatment of intact hpg female mice alone, or combined with E2 + P, increased GnRH receptors to values similar to those of intact normal female mice. In contrast, the receptor rise after GnRH treatment alone of ovariectomized hpg mice was significantly less than in intact hpg mice similarly treated. However, the combination of GnRH + E2 + P treatment of ovariectomized hpg mice increased GnRH receptors to normal intact female values, indicating the synergistic actions of these hormones on GnRH receptor up-regulation at the pituitary. Oestradiol treatment of ovariectomized normal female mice prevented the receptor fall after ovariectomy, and when combined with exogenous GnRH further increased receptors to values identical to those of intact female mice receiving GnRH alone. Ovariectomy of hpg mice had no effect on GnRH receptor, serum or pituitary LH and FSH values. There was no change in serum LH concentration after GnRH treatment of hpg female mice, but serum FSH increased and this was accentuated by ovariectomy, indicating that in intact mice an ovarian factor(s) normally inhibits GnRH-stimulated FSH release. This factor did not appear to be an ovarian steroid since serum FSH was not suppressed in intact or ovariectomized GnRH-treated hpg mice concurrently receiving E2 + P treatment. These results suggest that: (1) gonadal steroids alone have a major direct stimulatory action on the pituitary to increase GnRH receptors; (2) the oestrogen-induced increase in GnRH receptors is enhanced in the presence of GnRH; (3) steroids exert inhibitory feedback on gonadotrophin secretion that is mediated at some cellular regulatory locus other than the GnRH-receptor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号