首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transglutaminases have the ability to incorporate primary amines and to graft peptides (containing glutamine or lysine residues) into proteins. These properties enable transglutaminases to be used in the grafting of a range of compounds including peptides and/or proteins onto wool fibres, altering their functionality. In this paper we investigated the transglutaminase mediated grafting of silk proteins into wool and its effect on wool properties. A commercial hydrolysed silk preparation was compared with silk sericin. The silk sericin protein was labelled with a fluorescent probe which was used to demonstrate the efficiency of the TGase grafting of such proteins into wool fibres. The TGase mediated grafting of these proteins led to a significant effect on the properties of wool yarn and fabric, resulting in increased bursting strength, as well as reduced levels of felting shrinkage and improved fabric softness. Also observed was an accumulation of deposits on the surface of the treated wool fibres when monitored by SEM and alterations in the thermal behaviour of the modified fibres, in particular for mTGase/sericin treated fibres which, with the confocal studies, corroborate the physical changes observed on the treated wool fabric.  相似文献   

2.
Chitosan, a naturally available biopolymer which is now increasingly being used as a functional finish on textile substrates to impart antimicrobial characteristics and increase dye uptake of fabrics was applied on wool fabrics. Henna a natural dye with proven bactericidal properties was applied on wool fabrics along with chitosan to impart antimicrobial characteristics. The effect of chitosan application on the dyeing properties of wool fabrics was studied by measuring the K/S values of the treated substrates at various concentrations of chitosan and the dye. The antimicrobial properties of chitosan and natural dyes both when applied independently and collectively on fabrics were assessed. The results proved that the chitosan treated wool fabrics showed increase dye uptake of fabrics. The treated fabrics were found to be antimicrobial and the chitosan treatment enhances the antimicrobial characteristics of the dyes. Fastness properties of the applied finish to washing, rubbing and perspiration have also been discussed.  相似文献   

3.
To improve the effects of protease finishing on wool, 1‐butyl‐3‐methylimidazolium chloride ionic liquid was employed as a pretreatment reagent. It was found that ionic liquid pretreatment significantly changed the wool surface characteristics. The Allwördern reaction showed that the epicuticle layer was damaged by the ionic liquid, and X‐ray photoelectron spectroscopy analysis further demonstrated that the surface elemental composition was significantly changed. Ionic liquid pretreatment remarkably improved the accessibility of protease to the wool and thus accelerated the hydrolysis rate of keratin. The properties of wool fabric after combined processing were also changed. Dyeability results showed that the color depth was increased but the wet rubbing and washing fastness of wool fabrics showed a decreased half grade. The wettability results demonstrate that the contact angle was further reduced after the comprehensive treatment because of the exposure of more proteins under the fatty‐acid layer. In addition, the shrink proofing of wool fabric was also enhanced after combined processing. In summary, ionic liquid modification presents a promising pretreatment method for protease processing of wool.  相似文献   

4.
Antibacterial functionalization of wool fabric via immobilizing lysozymes   总被引:2,自引:0,他引:2  
Greater attention has been given to enzymatic processes of textiles as effective alternatives to conventional chemical treatments because of the non-toxic and eco-friendly characteristics of enzymes as well as the increasingly important requirement for reducing pollution in textile production. A new functionalization method for wool fabrics based on immobilization of lysozymes was investigated in this paper. Wool fabric was first activated with glutaraldehyde, and then employed to covalently immobilize lysozymes. Main immobilization parameters were optimized in terms of the activity of immobilized enzyme. A high activity of the immobilized enzyme was obtained when the fabric was activated at 25 °C for 6 h in a bath containing with 0.2% of glutaraldehyde followed by the immobilization at 4 °C and pH 7.0 for 6 h with 5 g l−1 lysozyme. The scanning electron microscopy and staining tests based on modified Coomassie protein assay (Bradford method) revealed that the lysozyme was fixed covalently on the wool fabric. Wool fabrics immobilizing lysozymes presented a higher ratio of bacteriostasis to Staphylococcus aureus. The durability of antibacterial wool was assessed and the lysozyme immobilized on wool fabric retained ca. 43% of its activity after five cycles of use when taking the activity of the immobilized lysozyme before using as reference.  相似文献   

5.
In this study, three kinds of methylated chitosan containing different aromatic moieties were synthesized by two steps, reductive amination and methylation, respectively. The chemical structures of all methylated derivatives, methylated N-(4-N,N-dimethylaminocinnamyl) chitosan chloride (MDMCMChC), methylated N-(4-N,N-dimethylaminobenzyl) chitosan chloride (MDMBzChC), and methylated N-(4-pyridinylmethyl) chitosan chloride (MPyMeChC) were characterized by ATR–FTIR and 1H NMR spectroscopy. The complexes between the chitosan derivatives and plasmid DNA at different N/P ratios were characterized by gel electrophoresis, dynamic light scattering, and atomic force microscopic techniques. The smallest particle sizes of these complexes were obtained at N/P ratio of 5 and ranged from 95 to 124 nm while the zeta-potentials were in the range of 18–27 mV. Transfection efficiencies of these complexes were investigated by expression of the plasmid DNA encoding green fluorescence protein (pEGFP-C2) on human hepatoma cells (Huh 7 cells) compared to N,N,N-trimethyl chitosan chloride (TMChC). The rank of transfection efficiency was MPyMeChC > MDMBzChC > TMChC > MDMCMChC, respectively. The cytotoxicity of these complexes was also studied by MTT assay where the MPyMeChC complex exhibited less toxicity than other derivatives even at high N/P ratios. Therefore, MPyMeChC demonstrated potential as its safe and efficient gene carrier.  相似文献   

6.
The project ‘EXTRETEX’ funded by the German Federal Foundation Environment (DBU, Osnabrück, Germany) aims at the improvement of wool properties dyeability, handle, felting behaviour and degree of whiteness by means of enzymes derived from extremophilic micro-organisms. In this paper the effects of a commercial thermo- and alkalistable protease on wool with regard to the degree of whiteness, the dyeability and the felting behaviour are presented. A method to treat wool top and wool fabric was developed on a laboratory scale in which the protease was integrated into the pre-washing step of a dyeing process. This treatment method was than scaled up and tested on an industrial winch beck for fabric. With this method—the addition of enzyme in the pre-washing step—the degree of whiteness is generally enhanced. Dyeing untreated and the enzyme-treated wool with Lanasol Blue 8G leads to an improved dyestuff uptake and a distinctive difference in the colour shade for the latter. Microscopy pictures of fibre cross-sections of these samples display a more even distribution of the dyestuff and a better penetration in the enzyme-treated wool fibres but the colour fastness of the enzyme-treated wool is decreased. Though the felting behaviour of the protease treated wool is significantly improved the felting tendency is still too high for an antifelting finish. An increased damage of the enzyme-treated wool in comparison with the untreated one was not observed.  相似文献   

7.
角质酶/角蛋白酶一浴法处理对羊毛性能的影响   总被引:1,自引:0,他引:1  
采用T.fusca产角质酶以及Bacillus subtilis产角蛋白酶一浴法的方式处理羊毛,通过毡缩率、断裂强力、碱溶解度、上染速率、K/S值和接触角等指标考察了该处理对羊毛的改性效果,并运用XPS、氨基酸分析和SEM考察了其对羊毛结构与性质的影响。实验结果表明:经一浴法处理后,羊毛织物的毡缩率下降明显,达到机可洗要求;断裂强力下降较少,碱溶解度增加较少,上染速率提高,K/S值增加;XPS分析表明,经处理后羊毛纤维表面的元素含量变化较大;氨基酸分析表明,经处理后羊毛纤维中的胱氨酸质量分数有所降低;SEM显示,羊毛鳞片层大部分被剥除,综上可以说明角质酶/角蛋白酶的一浴法处理对羊毛具有明显的改性作用。  相似文献   

8.
Acidic glutaraldehyde (Gh) crosslinked chitosan (ChGhH) when deprotonated the biopolymer (ChGh) presents high content of free amino groups. These modified biopolymers are comparable to epichlorohydrin (Ep) crosslinked (ChEp). C/N molar ratio of 6.1 for chitosan increases to 7.3, 7.5 and 7.1 for ChGhH, ChGh and ChEp. The effectiveness of the carbon-6 hydroxyl group in interconnecting chitosan units was supported by IR and 13CNMR, where Ep promotes increase in crystallinity. Copper uptake gave the order Ch > ChGh > ChGhH > ChEp, as: 1.35 ± 0.06, 1.30 ± 0.05, 1.05 ± 0.07 and 0.96 ± 0.22 mmol g−1, reflecting the availability of nitrogen basic centers in adsorbing. The favorable thermodynamic data of adsorption through calorimetric titration gave exothermic enthalpic values: −28.98 ± 0.05, −6.68 ± 0.04, −6.13 ± 0.07 and −0.65 ± 0.23 kJ mol−1 for Ch, ChGh, ChGhH and ChEp. Free Gibbs energy reflected spontaneity of interactions and, with the exception of chitosan, the entropic values are positive.  相似文献   

9.
In the present study, nanochitosan emulsion has been produced in a suspension form by adding tripolyphosphate solution into a chitosan solution drop-wise. The adsorption capacities of four acid dyes, namely, Acid Orange 10 (AO10), Acid Orange 12 (AO12), Acid Red 18 (AR18) and Acid Red 73 (AR73) on nanochitosan, have been determined to be 1.77, 4.33, 1.37 and 2.13 mmol l(-1), respectively. The nanochitosan dye capacities were compared with normal chitosan capacities which were 1.54, 2.66, 1.11 and 1.25 mmol l(-1) for AO10, AO12, AR18 and AR73, respectively. In all cases, the nanochitosan has a higher capacity. The mechanism of acid dye adsorption and the effect of pH are also discussed.  相似文献   

10.
The development of antibiotic resistant in K. pneumoniae is an emerging thread worldwide due to the poor antimicrobial drugs. To overcome this issue, researchers are focused on plant material and their essential oils to fight against multi drug resistant bacteria. In this context, the current study was concentrated in medicinal plant of guva leaves and their essential oils to combat multi drug resistant bacterial infections. The essential oils were successfully screened and confirmed by HRLC-MS analysis. The anti-bacterial ability of the compounds were loaded into the chitosan nanoparticles and proved by FT-IR analysis. In addition, the chitosan loaded essential oils morphology was compared with chitosan alone in SEM analysis and suggested that the material was loaded successfully. Further, the anti-bacterial ability of the chitosan loaded essential oils were primarily confirmed by agar well diffusion method. At the 100 µg/mL of lowest concentration of chitosan loaded essential oils, the multi-drug resistant K. pneumoniae was inhibited with 96% and confirmed by minimum inhibition concentration experiment. Hence, all the experiments were proved that the essential oils were successfully loaded into the chitosan nanoparticles, and it has more anti-bacterial activity against multi-drug resistant K. pneumoniae.  相似文献   

11.
A novel approach for upgrading both the wrinkle free and softness properties of cotton fabrics without adversely affecting their strength properties using an eco-friendly finishing regimes was investigated. Factors affecting the performance properties of the finished substrate such as pre-treatment, i.e., carboxymethylation (CMC) or ionic-crosslinking, post-treatment with amino functional silicone softener and its concentration, degree of carboxymethylation as well as thermofixation conditions were studied. The obtained results revealed that post-treatment with the amino based silicone micro emulsion (SiE) up to 30 g/L at pH 4 to a wet pickup of 100% followed by drying at 100 °C for 5 min and curing at 170 °C for 3 min results in a remarkable improvement in fabric resiliency (expressed as dry and wet wrinkle recovery angles), as well as in softness degree, without seriously affecting its retained strength. Improvement extent of the aforementioned properties is governed by the nature of the pre-treatment steps. Fixation of the amino-functional silicone softener onto/or within the modified cellulose structure is accompanied by a formation of semi-inter and/or intra-penetrated network (semi-IPN) thereby enhancing both the extent of crosslinking and networking as well as providing very high softness. FTIR analysis proved the formation of Si–O–Si–cellulose complex. Scanning electron micrograph shows that cotton, CMC and ionic crosslinked cotton fabrics treated with SiE shows higher surface smoothness and considerable reduction in protruding loose fibers, ditches and grooves compared with the untreated one.  相似文献   

12.
In this study, a 24 factorial experimental design was employed in order to evaluate the influence of the reaction conditions and preparation method on alginate–chitosan hydrogel properties. Alginate content, pH, chitosan molecular weight and the hydrogel preparation method were the independent variables and the reaction yield, particle size, swelling degree and point of zero surface charge were the dependent variables. The results showed that hydrogels were spherical with an average diameter of 5.0 ± 2.0 μm. Reaction yield varied according to the parameters, and chitosan molecular weight showed the greatest influence. Furthermore, the swelling degree and point of zero surface charge showed a linear dependence on the alginate content. In this regard, the study showed that hydrogels with a specific charge and swelling degree can be obtained by controlling the alginate content using the equation here provided to give an enhanced and site-specific controlled drug release.  相似文献   

13.
《农业工程》2020,40(6):473-477
To enhance the efficiency of biological, chemical and physical properties like antibacterial activity, wash durability, air-permeability and biocompatibility of cotton fabric finished with chitosan and herbal nanocomposites. Extracts of Cassia angustifolia and Tamarindus indica with chitosan solution was bulk finished on 40s cotton fabrics. To increase the functional properties, chitosan and herbal extract nanocomposites were finished on to another set of fabrics (nanocomposite finishing). Different functional properties were carried out for both the sets of fabrics and comparatively analyzed. Antibacterial activity, physical properties and biocompatible properties of the finished fabric were determined. Antibacterial activity of nanocomposite finished fabrics showed inhibitory zones of 33 mm for E. coli and 31.6 mm for S. aureus. Nanocomposite finished fabrics showed good durable properties and physical properties than bulk finished fabrics. The study concludes that, nanocomposites could provide better functional properties than the bulk finished fabrics. The nano sized particles in the composites was considered significant for its functional applications in hospital based fabrics to prevent the transmission of nosocomial infections.  相似文献   

14.
The 9 quaternary ammonium chitosans containing monosaccharides or disaccharides moieties were successfully synthesized by reductive N-alkylation then quaternized by N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride (Quat-188). The chemical structures of quaternary ammonium chitosan derivatives were characterized by ATR-FTIR and 1H NMR spectroscopy. The degree of N-substitution (DS) and the degree of quaternization (DQ) were determined by 1H NMR spectroscopic method. It was found that the DS was in the range of 12–40% while the DQ was in the range of 90–97%. The results indicated that the O-alkylation was occured in this condition. Moreover, all quaternary ammonium chitosan derivatives were highly water-soluble at acidic, basic, and neutral pH. Minimum inhibitory concentration (MIC) antibacterial studies of these materials were carried out on Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria compared to quaternary ammonium N-octyl and N-benzyl chitosan derivatives. The quaternary ammonium mono and disaccharide chitosan derivatives showed very high MIC values which were in the range of 32 to >256 μg/mL against both bacteria. Also it was found that the antibacterial activity decreased with increasing the DS. This was due to the increased hydrophilicity of mono and disaccharide moieties. On the other hand, the low MIC values (8–32 μg/mL) were obviously observed when the DS of quaternary ammonium N-octyl and N-benzyl chitosan derivatives was lower than 18%. The results showed that the presence of hydrophobic moiety such as the N-benzyl group enhanced the antibacterial activity compared to the hydrophilic moiety against both bacteria.  相似文献   

15.
16.
The efficient procedure for preparation of chitosan acid complexes containing aspartic acid, benzilic acid and terephthalic acid moieties in isopropyl alcohol under mild condition has been demonstrated. The ionic complexation between chitosan and the acid is confirmed by FTIR and 1H NMR spectroscopy. The circular dichroism (CD) spectra of chitosan/aspartic acid complex showed negative (at λ = 312) band, chitosan/benzilic acid and chitosan/terephthalic complexes showed positive (at λ = 286 and 315 nm) band in DMSO, indicating that the polymers adopted helical (left-handed and last two right-handed) secondary structure. The inversion of the CD pattern in chitosan acid salt complexes suggests that there is a change in the chiral structure of the polymer system. Some physical properties and surface morphology were analyzed by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetry (TG) and scanning electron microscopy (SEM). Optical properties of chitosan derivatives are evaluated by photoluminescence (PL) spectroscopy which showed red shift. The introduction of acid moieties into chitosan increases the solubility in most of the organic solvents, which opens new perspectives for the employment of chitosan-based biohybrid in biomedical applications.  相似文献   

17.
Standard maize starch was hydrothermally treated by Instantaneous Controlled Pressure Drop (DIC) process at three pressure levels (1, 2 and 3 bar) corresponding to the temperatures of 100, 122 and 135 °C (at 13–27% moisture), respectively. The structural effects of various hydrothermal conditions were examined with differential scanning calorimetry (DSC) and wide-angle X-ray diffraction. In order to understand the changes that occur during DIC treatment, melting endotherms of native maize starch at various moisture contents were determined. The gelatinization temperatures of DIC treated standard maize starch increased with DIC treatment. The transition temperatures (To, Tp) are closely related to the combined effect of pressure and processing time. At approximately 10 min of processing time, To and Tp were 65.7 and 72.3, 68.8 and 73.6 °C, 74.8 and 79.8 °C for pressure levels of 1, 2 and 3 bar, respectively (against 63.1 and 69.6 °C for native starch). DIC treatment narrowed the gelatinization temperature range and decreased gelatinization enthalpy (ΔH), as the severity of processing conditions increased. ΔH decreased from 11.4 J g−1 (native) to 11.0 (1 bar), 9.0 (2 bar) and 1.7 J g−1 (3 bar) for treated maize starch during approximately 10 min. Relative crystallinity of hydrothermally treated starch decreased with increasing DIC conditions. The A-type crystalline pattern was progressively lost (at pressure level 2 bar) and substituted by the Vh-type X-ray diffraction pattern, corresponding to the formation of amylose–lipid complexes. For severe DIC conditions (pressure level of 3 bar), the substitution was completed. Microscopic observations revealed progressive loss of the birefringence of DIC treated starch granules except at low pressure (1 bar), while the integrity of starch granules was preserved for all the conditions. These modifications that reveal important changes in the crystalline organization of the starch granules are related to their functional properties.  相似文献   

18.
Cotton fabrics were treated with finishing bath formulation containing emulsion lattices based on acrylate monomers, chitosan and polyethylene glycol (PEG) to provide cotton fabrics with antibacterial, UV-protection as well as improvement of dyeing properties with direct, acid and reactive dyes. The terpolymer emulsion, chitosan and PEG concentrations as well as fabric pretreatment with alkali significantly affected the performance properties, antimicrobial activity, UV-protection and dyeing behavior of treated cotton fabric. The finished fabrics were characterized in terms of FTIR, X-ray diffraction, scanning electron microscope (SEM) as well as mechanical properties such as tensile strength, elongation at break (%), abrasion resistance and air permeability. The obtained data showed that the tested fabrics have appropriate antibacterial activity with highly UV-protection properties with increasing chitosan concentration up to 3%. The mechanical properties expressed as tensile strength and abrasion resistance increased after finishing treatment. Moreover, the performance of the finished fabrics and dyeing properties with different dyes classes were greatly influenced by the action of alkali pretreatment of cotton fabrics, adding the polyethylene glycol to the finishing bath formulation as well as emulsion and chitosan concentrations.  相似文献   

19.
Chitosan scaffolds were fabricated by application of thermally induced phase separation from aqueous solutions of unmodified chitosan and hydrophobically modified chitosan polymer. The final pore structure, in terms of diameter and geometry, were correlated to freezing temperature and freezing time for both the unmodified and hydrophobically modified chitosan polymer. Results showed that the resulting pore structure is strongly dependent upon the freezing temperature and less dependant upon the freezing time. For scaffolds produced from unmodified chitosan, the pore size decreased as expected with decreasing freezing temperature from ?5 °C to ?10 °C. However, an inconsistency in this trend was observed as the freezing temperature was decreased to ?20 °C. Combined analysis of pore size distribution and average pore diameter suggested that the freezing process was mainly mass transfer dominated at ?5 °C and ?10 °C, but principally heat transfer dominated at ?20 °C. In comparison, the scaffolds produced from hydrophobically modified chitosan (butyl-chitosan) followed the expected trend of decreasing mean pore diameter with decreased freezing temperatures throughout the entire temperature range. The scaffolds produced from the unmodified chitosan were more stable and rigid, and possessed average pore diameters that were generally smaller than those fabricated from the hydrophobically modified chitosan. The generally larger pores in the butyl-modified chitosan scaffolds might be explained by increased phase separation rates due to the introduced hydrophobicity of the chitosan polymer. Among the scaffolds fabricated from the butyl-modified chitosan, those produced at ?20 °C yielded the most uniform pore structure, the smallest average pore diameters, and the least temporal broadening of pore size distribution.  相似文献   

20.
Chitosan, a natural polysaccharide comprising copolymers of glucosamine and N-acetylglucosamine, has been shown to have anti-obesity properties. Two experiments (Exp. 1 and Exp. 2) were performed to determine the role of chitosan on dietary intake, body weight gain, and fat deposition in a pig model, as well as identifying potential mechanisms underlying the anti-obesity effect of chitosan. In Exp. 1, the nutrient digestibility experiment, 16 pigs (n = 4/treatment) were randomly allocated to one of four dietary treatments as follows: 1) basal diet; 2) basal diet plus 300 ppm chitosan; 3) basal diet plus 600 ppm chitosan; 4) basal diet plus 1200 ppm chitosan. The main observation was that crude fat digestibility was lower in the 1200 ppm chitosan group when compared with the control group (P<0.05). In Exp. 2, a total of 80 pigs (n = 20/treatment) were offered identical dietary treatments to that offered to animals in Exp. 1. Blood samples were collected on day 0, day 35 and at the end of the experiment (day 57). Animals offered diets containing 1200 ppm chitosan had a lower daily dietary intake (P<0.001) and body weight gain (P<0.001) from day 35 to 57 when compared with all the other treatment groups. Animals offered diets containing 1200 ppm chitosan had a significantly lower final body weight (P<0.01) when compared with all the other treatment groups. The decreased dietary intake observed in the 1200 ppm chitosan group was associated with increased serum leptin concentrations (P<0.001) and a decrease in serum C-reactive protein (CRP) concentrations (P<0.05). In conclusion, the results of this study highlight novel endocrine mechanisms involving the modulation of serum leptin and CRP concentrations by which chitosan exhibits anti-obesity properties in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号