首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stimulation through the antigen receptor (TCR) of T lymphocytes triggers cytosolic calcium ([Ca2+]i) oscillations that are critically dependent on Ca2+ entry across the plasma membrane. We have investigated the roles of Ca2+ influx and depletion of intracellular Ca2+ stores in the oscillation mechanism, using single-cell Ca2+ imaging techniques and agents that deplete the stores. Thapsigargin (TG; 5-25 nM), cyclopiazonic acid (CPA; 5-20 microM), and tert- butylhydroquinone (tBHQ; 80-200 microM), inhibitors of endoplasmic reticulum Ca(2+)-ATPases, as well as the Ca2+ ionophore ionomycin (5-40 nM), elicit [Ca2+]i oscillations in human T cells. The oscillation frequency is approximately 5 mHz (for ATPase inhibitors) to approximately 10 mHz (for ionomycin) at 22-24 degrees C. The [Ca2+]i oscillations resemble those evoked by TCR ligation in terms of their shape, amplitude, and an absolute dependence on Ca2+ influx. Ca(2+)- ATPase inhibitors and ionomycin induce oscillations only within a narrow range of drug concentrations that are expected to cause partial depletion of intracellular stores. Ca(2+)-induced Ca2+ release does not appear to be significantly involved, as rapid removal of extracellular Ca2+ elicits the same rate of [Ca2+]i decline during the rising and falling phases of the oscillation cycle. Both transmembrane Ca2+ influx and the content of ionomycin-releasable Ca2+ pools fluctuate in oscillating cells. From these data, we propose a model in which [Ca2+]i oscillations in T cells result from the interaction between intracellular Ca2+ stores and depletion-activated Ca2+ channels in the plasma membrane.  相似文献   

2.
Stimulation of suspensions of fura-2-loaded human neutrophils with ATP resulted in an elevation in cytosolic free calcium concentration ([Ca2+]i) from a basal value of 0.1 microM to a transient peak of 1 microM. The response is due to Ca2+ release from intracellular stores and influx of extracellular Ca2+. Release from intracellular stores is shown by the response in the absence of extracellular Ca2+. The greater and more maintained response in the presence of extracellular Ca2+ is indicative of stimulated Ca2+ entry and a stimulated influx pathway was confirmed by using Mn2+ as a surrogate for Ca2+. A variety of purinergic agonists were used to characterize the pharmacology of this [Ca2+]i response. Their rank order of potency was ATP greater than adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) greater than ADP much greater than 2-methylthioadenosine 5'-triphosphate (2Me-SATP), where ATP had an EC50 value of 3 microM and 2MeSATP had an EC50 value of 1000 microM. Adenosine 5'-O-(2-thiodiphosphate) (ADP beta S), adenylyl (alpha,beta-methylene)- diphosphonate (AMPCPP) and adenosine were inactive at 1 mM. These results suggest that neutrophils have a novel type of purinergic P2 receptor that is neither P2x nor P2y.  相似文献   

3.
It is well-known that pH changes can influence a lot of cellular processes. In this work, we have specifically studied the influence of alkalinization, which can be developed in spinal cord neurons during hyperventilation (respiratory alkalosis) and chronic renal failure (metabolic alkalosis) on calcium homeostasis. Application of Tyrode solution with increased pH (pH = 8.8) to secondary sensory neurons isolated from rat spinal dorsal horn induced elevation of intracellular free calcium concentration in the cytosol ([Ca2+]i) if applied after membrane depolarization. Repetitive application of alkaline solution led to disappearance of such elevations. Depletion of endoplasmic reticulum (ER) calcium stores by 30 mM caffeine almost completely blocked the effect of elevated extracellular pH. If caffeine-induced [Ca2+]i transients were evoked during alkalinization, their amplitudes were decreased by 41%. Preapplication of 500 nM ionomycin resulted in disappearance of alkalinization-induced [Ca2+]i transients, whereas prolonged applications (for 20 min) of 200 nM thapsigargin, a blocker of Ca2+ ATPase of the endoplasmic reticulum, resulted in disappearance of the rapid phase of the [Ca2+]i transients induced by alkalinization. Preapplication of the mitochondrial protonophore CCCP (10 microM) also induced changes in the alkalinization-induced calcium response--it lost its peak and was transformed into an irregular wave terminating in several seconds. The data obtained indicate that alkalinization induces an increase of [Ca2+]i level in the investigated neurons via a combined action of both intracellular Ca2+-accumulating structures--the endoplasmic reticulum and mitochondria. This suggestion was supported by morphological data that both structures in these neurons are tightly connected and may interact during release of accumulated calcium ions.  相似文献   

4.
The biochemical basis of Ca2+ mobilization after anti-Ig binding to B cell Ag-R has been further characterized by flow cytometric analysis of indo-1-loaded B cells. The ability to distinguish intracellular Ca2+ release from extracellular Ca2+ influx by using an extracellular calcium depletion-repletion approach has allowed us to study the relationship between the mobilization of Ca2+ from these sources. Studies involving manipulation of the Ca2+ gradient across the plasma membrane indicate that a significant portion of the Ca2+ mobilization response is preserved even when the normal inwardly directed Ca2+ gradient is reversed. In the presence of an extracellular calcium concentration ([Ca2+]o) of 10 microM, the response to anti-Ig is not blocked by the organic Ca2+ channel blockers. This response is not reduced by further depletion of [Ca2+]o by EGTA Ca2+-binding buffers. Thus, the Ca2+ response that occurs when [Ca2+]o less than or equal to 10 microM represents intracellular calcium release. Analysis of B cells stimulated with anti-Ig in low Ca2+ medium ([Ca2+]o = less than 10 microM) followed by repletion of [Ca2+]o to 1 to 5 mM reveals that a significant increase in permeability of the plasma membrane to Ca2+ develops in the stimulated cells. The resultant Ca2+ influx is nimodipine (20 microM) sensitive. Both intracellular Ca2+ release and Ca2+ influx are reduced in parallel as the concentration of anti-Ig stimulus is decreased, suggesting that Ca2+ influx may be coupled to the release of intracellular stores. Neomycin blocks anti-Ig-stimulated formation of inositol trisphosphate, which mediates release of Ca2+ from the endoplasmic reticulum. It also blocks the anti-Ig-induced release of intracellular Ca2+ stores as well as Ca2+ influx, indicating that both responses may be dependent upon phosphatidylinositol 4,5-bisphosphate hydrolysis.  相似文献   

5.
Effect of anti-Ig on cytosolic Ca2+ in Daudi lymphoblastoid cells   总被引:2,自引:0,他引:2  
We examined the response in the free intracellular calcium concentration ([Ca2+]i) of Daudi (human lymphoblastoid) cells to antibodies against human immunoglobulins (anti-Ig), and the relationship of [Ca2+]i to anti-Ig-induced capping. At 80 microM intracellular quin-2 (a fluorescent probe for [Ca2+]i), anti-Ig (10 micrograms/ml) caused a rapid increase in [Ca2+]i from 100 to 600 nM; the signal returned to baseline with approximately 1 min. At 450 microM intracellular quin-2, [Ca2+]i rose to only approximately 250 microM, and the signal declined gradually, returning to base line after greater than 7 min. In subsequent experiments, the lower concentrations of quin-2 were employed. Plots of the amplitude of the [Ca2+]i transients and of the binding of 125I-anti-Ig to Daudi cells versus the concentrations of anti-Ig showed similar saturation kinetics, with half-saturation occurring at 2-3 micrograms/ml. Part of the calcium in the transient is derived from the extracellular medium, and part from the nonmitochondrial intracellular stores. Caffeine (4 mM) and 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate HCl (0.5 mM) suppressed the release of calcium from internal stores and the entry of calcium from outside the cells, but permitted capping in more than half of the cells. Phorbol esters (1-2 nM) inhibited both capping and the anti-Ig-induced decrease in [Ca2+]i. None of these agents blocked the binding of anti-Ig to the cells. It appears that receptor capping is not dependent on the anti-Ig-induced transient increase in calcium concentration.  相似文献   

6.
We have studied the changes of the intracellular free calcium concentration ([Ca2+]i) effected by external ATP, which induces formation of inositol trisphosphate, and by the divalent cation ionophores ionomycin and A23187. Both, ATP (40 microM) and ionophores (1-80 mumol/l cells ionomycin; 20-400 mumol/l cells A23187), produced a transient rise of [Ca2+]i which reached its maximum within 15-30 s and declined near resting values (about 200 nM) within 1-3 min. When the [Ca2+]i peak surpassed 500 nM a transient cell shrinkage due to simultaneous activation of Ca2+-dependent K+ and Cl- channels was also observed. The cell response was similar in medium containing 1 mM Ca2+ and in Ca2+-free medium, suggesting that the Ca mobilized to the cytosol comes preferently from the intracellular stores. Treatment with low doses of ionophore (1 mumol/l cells for ionomycin; 20 mumol/l cells for A23187) depressed the response to a subsequent treatment, either with ionophore or with ATP. Treatment with ATP did also inhibit the subsequent response to ionophore, but in this case the inhibition was dependent on time, the stronger the shorter the interval between both treatments. This result suggests that the permeabilization of Ca stores by ATP is transient and that Ca can be taken up again by the intracellular stores. Refill was most efficient when Ca2+ was present in the incubation medium. Addition of either ATP or ionomycin (1-25 mumol/l cells) to cells incubated in medium containing 1 mM Ca2+ decreased drastically the total cell Ca content during the following 3 min of incubation. In the case of ATP the total cell levels of Ca returned to the initial values after 7-15 min, whereas in the case of the ionophore they remained decreased during the whole incubation period. These results indicate that Ca released from the intracellular stores by either ATP or ionophores is quickly extruded by active mechanisms located at the plasma membrane. They also suggest that, under the conditions studied here, with 1 mM Ca2+ outside, the Ca-mobilizing effect of ionophores is stronger in endomembranes than in the plasma membrane.  相似文献   

7.
Jan CR  Tseng CJ 《Life sciences》1999,65(23):2513-2522
The effect of miconazole on intracellular calcium levels ([Ca2+]i) in Madin Darby canine kidney (MDCK) cells was studied using fura-2 as the Ca2+ indicator. Miconazole increased [Ca2+]i dose-dependently at concentrations of 5-100 microM. The [Ca2+]i transient consisted of an initial rise, a gradual decay and an elevated plateau (220 s after addition of the drug). Removal of extracellular Ca2+ partly reduced the miconazole response. Mn2+ quench of fura-2 fluorescence confirmed that miconazole induced Ca2+ influx. The miconazole-sensitive intracellular Ca2+ store overlapped with that sensitive to thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+ pump, because 20 microM miconazole depleted the thapsigargin (1 microM)-sensitive store, and conversely, thapsigargin abolished miconazole-induced internal Ca2+ release. Miconazole (20-50 microM) partly inhibited the capacitative Ca2+ entry induced by 1 microM thapsigargin, measured by depleting intracellular Ca2+ store in Ca(2+)-free medium followed by addition of 10 mM CaCl2. Miconazole induced capacitative Ca2+ entry on its own. Pretreatment with 0.1 mM La3+ partly inhibited 20 microM miconazole-induced Mn2+ quench of fura-2 fluorescence and [Ca2+]i rise, suggesting that miconazole induced Ca2+ influx via two pathways separable by 0.1 mM La3+. Miconazole-induced internal Ca2+ release was not altered when the cytosolic level of inositol 1,4,5-trisphosphate (IP3) was substantially inhibited by the phospholipase C inhibitor U73122.  相似文献   

8.
Calcium level in organelles of the slime mold Physarum polycephalum was monitored by chlortetracycline, a low-affinity calcium indicator. It was found that 2,5'-di(tertbutyl)-1,4,-benzohydroquinone (BHQ) at a concentration of 100 microM, but not the highly specific inhibitor of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), thapsigargin (1-10 microM), elicited calcium release from the CTC-stained intracellular calcium pool. Ionomycin also caused a calcium release (23.7+/-5.1%), which was less than that induced by BHQ (30.1+/-6.0%). Procaine (10 mM), a blocker of ryanodine receptor, completely abolished the responses to BHQ and ionomycin. Another blocker, ryanodine (100 microM), only slightly diminished the responses to ionomycin and BHQ. Apparently, BHQ and ionomycin acting as a Ca2+-ATPase inhibitor and an ionophore, respectively, elicit an increase in [Ca2+]i, which in turn triggers a calcium-induced calcium release (CICR) via the ryanodine receptor. Caffeine, an activator of ryanodine receptor, at a concentration of 25-50 mM produced a Ca2+-release (5.6-16.0%), which was not similar in magnitude to CICR. The response to 25 mM caffeine was only moderately inhibited by 25 mM procaine, and almost completely abolished by 50 mM procaine and 100 microM ryanodine.  相似文献   

9.
Glucose depolarizes the pancreatic beta-cell and induces membrane potential oscillations, but the nature of the underlying oscillatory conductance remains unknown. We have now investigated the effects of the Ca2+ ionophore ionomycin and high external Ca2+ concentration ([Ca2+]o) on glucose-induced electrical activity and whole islet intracellular free Ca2+ concentration ([Ca2+]i), under conditions where the K(ATP) channel was blocked (100 microM tolbutamide or 4 microM glibenclamide). Raising [Ca2+]o to 10.2 or 12.8 mM, but not to 5.1 or 7.7 mM, turned continuous electrical activity into bursting activity. High [Ca2+]o (12.8 mM) regenerated a pattern of fast [Ca2+]i oscillations overshooting the levels recorded in tolbutamide. Ionomycin (10 microM) raised the [Ca2+]i and synergized with 5.1 mM Ca2+ to hyperpolarize the beta-cell membrane. The data indicate that a [Ca2+]i-sensitive and sulphonylurea-insensitive oscillatory conductance underlies the beta-cell bursting activity.  相似文献   

10.
The intracellular free Ca2+ concentration ([free Ca2+]i) was measured simultaneously with the Ca2+ extrusion from single isolated mouse pancreatic acinar cells placed in a microdroplet of extracellular solution using the fluorescent probes fura-2 and fluo-3. The extracellular solution had a low total calcium concentration (15-35 microM), and acetylcholine (ACh), applied by microionophoresis, therefore only evoked a transient elevation of [free Ca2+]i lasting about 2-5 min. The initial sharp rise in [free Ca2+]i from about 100 nM toward 0.5-1 microM was followed within seconds by an increase in the total calcium concentration in the microdroplet solution ([Ca]o). The rate of this rise of [Ca]o was dependent on the [free Ca2+]i elevation, and as [free Ca2+]i gradually decreased Ca2+ extrusion declined with the same time course. Ca2+ extrusion following ACh stimulation was not influenced by removal of all Na+ in the microdroplet solution indicating that the Ca2+ extrusion is not mediated by Na(+)-Ca2+ exchange but by the Ca2+ pump. The amount of Ca2+ extruded during the ACh-evoked transient rise in [free Ca2+]i corresponded to a decrease in the total intracellular Ca concentration of about 0.7 mM which is close to previously reported values (0.5-1 mM) for the total concentration of mobilizable calcium in these cells. Our results therefore demonstrate directly the ability of the Ca2+ pump to rapidly remove the large amount of Ca2+ released from the intracellular pools during receptor activation.  相似文献   

11.
In this paper, we demonstrate that low concentrations (0.5-2.5 microM) of 1,2-sn-dioctanoylglycerol (DiC8), a potent diacylglycerol used in many previous studies to probe the role of protein kinase C (PKC) in cell activation, cause cytosolic alkalinization of human, mouse and pig T lymphocytes through PKC-mediated activation of the Na+/H+ antiport. However, at higher concentrations (greater than or equal to 12.5 microM), the effect on cytosolic pH (pHi) is reversed, resulting in a marked cytosolic acidification, followed by a gradual return of pHi to baseline values. DiC8 also induces marked changes in cytosolic free calcium concentrations ([Ca2+]i), initially by releasing calcium from intracellular stores, followed by a net transmembrane influx of calcium. The DiC8-induced cytosolic acidification, the resultant return to baseline pH and the increase in [Ca2+]i are independent of activation of PKC. Unlike many other agents which increase [Ca2+]i, DiC8 does not induce phosphatidylinositol hydrolysis with the resultant production of inositol phosphates. Other compounds known to activate PKC, including the closely related diacylglycerol analogues, 1,2-sn-dihexanoylglycerol and 1,2-sn-didecanoylglycerol, phorbol esters and mezerein, did not induce changes in [Ca2+]i or cytosolic acidification in T lymphocytes. Thus the action of DiC8 on intact lymphocytes is different from that of phorbol esters and other diacylglycerols, and is specific to the length of the acyl chains. Because changes in [Ca2+]i are often associated with cell proliferation and cell differentiation, some effects of DiC8 on intact cells may be a consequence of changes in [Ca2+]i.  相似文献   

12.
NAADP (nicotinic acid-adenine dinucleotide phosphate)-induced Ca2+ release has been proposed to occur selectively from acidic stores in several cell types, including sea urchin eggs. Using fluorescence measurements, we have investigated whether NAADP-induced Ca2+ release alters the pH(L) (luminal pH) within these acidic stores in egg homogenates and observed their prompt, concentration-dependent alkalinization by NAADP (but not beta-NAD+ or NADP). Like Ca2+ release, the pH(L) change was desensitized by low concentrations of NAADP suggesting it was secondary to NAADP receptor activation. Moreover, this was a direct effect of NAADP upon the acidic stores and not secondary to increases in cytosolic Ca2+ as it was not mimicked by IP3 (inositol 1,4,5-trisphosphate), cADPR (cyclic adenine diphosphoribose), ionomycin, thapsigargin or by direct addition of Ca2+, and was not blocked by EGTA. The results of the present study further support acidic stores as targets for NAADP and for the first time reveal an adjunct role for NAADP in regulating the pH(L) of intracellular organelles.  相似文献   

13.
Jan CR  Yu CC  Huang JK 《Hormone research》2000,54(3):143-148
BACKGROUND/METHODS: The effect of clomiphene, an ovulation-inducing agent, on cytosolic free Ca2+ levels ([Ca2+]i) in populations of BFTC human bladder cancer cells was explored by using fura-2 as a Ca2+ indicator. RESULTS: Clomiphene at concentrations between 10 and 75 microM increased [Ca2+]i in a concentration-dependent manner and the signal saturated at 50 microM. The [Ca2+]i signal was biphasic with an initial rise and a slow decay. Ca2+ removal inhibited the Ca2+ signal by about 40-50% in maximum [Ca2+]i. Adding 3 mM Ca2+ increased [Ca2+]i in cells pretreated with 50 microM clomiphene in Ca2+-free medium, suggesting that clomiphene induced capacitative Ca2+ entry. In Ca2+-free medium, pretreatment with 50 microM brefeldin A (to disrupt the Golgi complex Ca2+ store), 1 microM thapsigargin (to inhibit the endoplasmic reticulum Ca2+ pump), and CCCP (to uncouple mitochondria) inhibited 85% of clomiphene-induced intracellular Ca2+ release. Conversely, pretreatment with 50 microM clomiphene in Ca2+-free medium abolished the [Ca2+]i increase induced by brefeldin, thapsigargin or CCCP. The intracellular Ca2+ release was unaltered by inhibiting formation of inositol-1,4,5-trisphosphate (IP3) with 2 mM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122; a phospholipase C inhibitor). CONCLUSION: The [Ca2+]i increase induced by 50 microM clomiphene was not affected by 10 microM of nifedipine, verapamil or diltiazem. Collectively, the results suggest that clomiphene releases intracellular Ca2+ in an IP3-independent manner and also activates extracellular Ca2+ influx.  相似文献   

14.
In rat pituitary somatotrophs, the stimulation of growth hormone secretion by growth hormone-releasing hormone (GHRH) is a Ca(2+)-dependent event involving Ca2+ influx. The presence of calcium-induced calcium release (CICR) Ca2+ stores has been suggested in these cells. The aim of our study was to demonstrate the presence of CICR stores in rat somatotrophs and to determine their function in GHRH Ca2+ signalling. To this end we measured cytosolic free Ca2+ concentration ([Ca2+]i), using indo-1 in purified rat somatotrophs in primary culture, while altering intracellular Ca2+ stores. Ionomycin (10 ttM) or 4-bromo-A23187 (10 ItM), used to mobilise organelle-bound Ca2+, raised [Ca2+]i in the absence of extracellular Ca2+. Caffeine (5 to 50 mM), used to mobilise Ca2+ from CICR stores, transiently raised [Ca2+]i in 65% of cells tested. The response to 40 mM caffeine was abolished when Ca2+ stores were depleted, with 1 microM thapsigargin or with 10 microM ryanodine. All cells that responded to 40 mM caffeine responded to 10 nM GHRH. The [Ca2+]i response to 10 nM GHRH was reversible and repeatable. However, the second response was 38% smaller than the first. Ryanodine treatment abolished the reduction in the second [Ca2+]i response, while thapsigargin increased the reduction by 67%. We conclude that rat somatotrophs possess CICR Ca2+ stores and that they account for 30-35% of the GHRH-induced increase in [Ca2+]i, and that their partial depletion is involved in somatotroph desensitization.  相似文献   

15.
Changes in calcium levels in organelles of the plasmodium of the myxomycete Physarum polycephalum were analyzed using the fluorescent calcium indicator chlortetracycline (CTC). Both the Ca2+-ATPase inhibitor 2,5;-di(tert-butyl)-1,4-benzohydroquinone (BHQ) (100 microM) and the calcium ionophore ionomycin (1 microM) induce a significant decrease in fluorescence level (by 30%) in CTC-stained microplasmodia; this is caused by release of calcium from intracellular storage compartments. An activator of ryanodine receptors, caffeine (10-50 mM), is less effective on Ca2+ release than BHQ or ionomycin, and their inhibitor, ryanodine (100 microM), almost completely blocks the response to caffeine, but only slightly decreases the effects of BHQ or ionomycin. Procaine, another inhibitor of ryanodine receptors, at 10 mM concentration completely abolishes both the BHQ and the ionomycin responses, but 50 mM is necessary to block the effect of 25 mM caffeine. These results suggest that both the BHQ- and the ionomycin-dependent Ca2+ releases occur through the ryanodine receptor and are to be considered as calcium-induced Ca2+ release (CICR). Both the ionomycin and the BHQ responses persist in the presence of Cd2+, which blocks Ca2+ channels of the plasmalemma. In most cases, Cd2+ itself induces release of Ca2+ from the CTC-stained calcium pool; the more effective Cd2+ is, the less the following ionomycin or BHQ responses occur. This indicates that Ca2+ entry through plasmalemma plays no significant role in the ionomycin- or BHQ-evoked initiation of CICR, and that the Cd2+- and BHQ/ionomycin-depleted Ca2+ stores overlap.  相似文献   

16.
The effects of NH4Cl on cytoplasmic free calcium concentration ([Ca2+]i) and pH (pHi) in single bovine anterior pituitary cells were determined using fluorescence imaging microscopy. Addition of NH4Cl (10-40 mM) in the presence of 1 mM extracellular calcium ([Ca2+]e) increased [Ca2+]i to a peak which then fell to a sustained plateau, returning to resting levels upon removal of NH4Cl. In medium containing 0.1 microM [Ca2+]e, or in 1 mM [Ca2+]e medium containing 0.1 microM nitrendipine, the plateau was absent leaving only a transient [Ca2+]i spike. NH4Cl also increased pHi and this, like the [Ca2+]i plateau, remained elevated during the continued presence of NH4Cl. In medium containing only 0.1 microM [Ca2+]e, to preclude refilling of internal stores by entry of external calcium, repeated exposures to NH4Cl induced repeated [Ca2+]i transients. In contrast, only the initial exposure to thyrotropin releasing hormone (TRH; 20-500 nM) caused a [Ca2+]i rise but, after an additional exposure to NH4CI, TRH responses re-emerged in some cells. Pre-treatment with the calcium ionophore ionomycin abolished the rise caused by TRH, but neither TRH nor ionomycin pretreatment affected the response to NH4Cl. Neither acetate removal nor methylamine increased [Ca2+]i in medium containing 0.1 microM [Ca2+]e, although in both cases pHi increased. We conclude that in bovine anterior pituitary cells NH4Cl raises [Ca2+]i by two independent pathways, increasing net calcium entry and mobilizing Ca2+ from a TRH-insensitive calcium store.  相似文献   

17.
The effects of oxidant stress and inhibition of glutathione reductase on the bradykinin-stimulated changes in cytosolic free Ca2+ concentration ([Ca2+]i) of calf pulmonary artery endothelial cells were determined using the intracellular fluorescent probe, fura-2. Changes in [Ca2+]i upon stimulation with bradykinin were measured after incubation of cells with the chemical oxidant tert-butyl hydroperoxide (0.4 mM) for various times. After 60 min, bradykinin-stimulated Ca2+ influx was significantly decreased. With more prolonged incubations with the peroxide, bradykinin had little effect on cytosolic calcium concentration. Preincubation of cells with the glutathione reductase inhibitor, carmustine, led to elevated basal [Ca2+]i, yet the cells remained responsive to bradykinin. However, incubation of carmustine-treated cells with tert-butyl hydroperoxide for 30 min dramatically reduced both bradykinin-stimulated release of Ca2+ from internal stores and influx of Ca2+ from the extracellular space. These results suggest that inhibition of glutathione reductase alters cytosolic Ca2+ homeostasis and enhances the effects of oxidative stress on signal transduction in vascular endothelial cells.  相似文献   

18.
The effect of the antidepressant mirtazapine on cytosolic free Ca2+ concentration ([Ca2+]i) and viability has not been explored in any cell type. This study examined whether mirtazapine alters Ca2+ levels and causes cell death in osteoblast-like cells using MG63 human osteosarcoma cells as a model. [Ca2+]i and cell viability were measured using the fluorescent dyes fura-2 and WST-1, respectively. Mirtazapine at concentrations above 250 microM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced by 60% by removing extracellular Ca2+. The mirtazapine-induced Ca2+ influx was sensitive to blockade of nifedipine and verapamil. In Ca(2+)-free medium, after pretreatment with 1.5 mM mirtazapine, 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), 2 microM CCCP (a mitochondrial uncoupler), and 1 microM ionomycin failed to release more stored Ca2+; conversely, pretreatment with thapsigargin, CCCP and ionomycin abolished mirtazapine-induced Ca2+ release. Inhibition of phospholipase C with 2 microM U73122 did not change mirtazapine-induced [Ca2+]i, increase. Seal of Ca2+ movement across the plasma membrane with 50 microM extracellular La3+ enhanced 1 microM thapsigargin-induced [Ca2+]i increase, suggesting that Ca2+ efflux played a role in lowering thapsigargin-induced [Ca2+]i increase; however, the same La3+ treatment did not alter mirtazapine-induced [Ca2+]i increase. At concentrations of 500 microM and 1000 microM, mirtazapine killed 30% and 60% cells, respectively. The cytotoxicity was not reversed by chelating cytosolic Ca2+ with BAPTA. Collectively, in MG63 cells, mirtazapine induced a [Ca2+]i increase by causing Ca2+ release from stores and Ca2+ influx from extracellular space. Furthermore, mirtazapine caused cytotoxicity at higher concentrations in a Ca(2+)-dissociated manner.  相似文献   

19.
The role of intracellular calcium stores in stimulus-secretion coupling in the pancreatic beta-cell is largely unknown. We report here that tetracaine stimulates insulin secretion from collagenase-isolated mouse islets of Langerhans in the absence of glucose or extracellular calcium. We also found that the anesthetic evokes a dose-dependent rise of the intracellular free-calcium concentration ([Ca2+]i) in cultured rat and mouse beta-cells. The tetracaine-specific [Ca2+]i rise also occurs in the absence of glucose, or in beta-cells depolarized by exposure to a Ca(2+)-deficient medium (< 1 microM) or elevated [K+]o. Furthermore, tetracaine (> or = 300 microM) depolarized the beta-cell membrane in mouse pancreatic islets, but inhibited Ca2+ entry through voltage-gated Ca2+ channels in HIT cells, an insulin-secreting cell line. From these data we conclude that tetracaine-enhancement of insulin release occurs by mechanisms that are independent of Ca2+ entry across the cell membrane. The tetracaine-induced [Ca2+]i rise in cultured rat beta-cells and insulin secretion from mouse islets is insensitive to dantrolene (20 microM), a drug that inhibits Ca2+ release evoked by cholinergic agonists in the pancreatic beta-cell, and thapsigargin (3 microM), a blocker of the endoplasmic reticulum (ER) Ca2+ pump. We conclude that the Ca2+ required for tetracaine-potentiated insulin secretion is released from intracellular Ca2+ stores other than the ER. Furthermore, tetracaine-induced Ca2+ release was unaffected by the mitochondrial electron transfer inhibitors NaN3 and rotenone. Taken together, these data show that a calcium source other than the ER and mitochondria can affect beta-cell insulin secretion.  相似文献   

20.
The effects of the thiol reagent, phenylarsine oxide (PAO, 10(-5)-10(-3) M ), a membrane-permeable trivalent arsenical compound that specifically complexes vicinal sulfhydryl groups of proteins to form stable ring structures, were studied by monitoring intracellular free calcium concentration ([Ca2+]i) and amylase secretion in collagenase dispersed rat pancreatic acinar cells. PAO increased [Ca2+]i by mobilizing calcium from intracellular stores, since this increase was observed in the absence of extracellular calcium. PAO also prevented the CCK-8-induced signal of [Ca2+]i and inhibited the oscillatory pattern initiated by aluminium fluoride (AlF-4). In addition to the effects of PAO on calcium mobilization, it caused a significant increase in amylase secretion and reduced the secretory response to either CCK-8 or AlF-4. The effects of PAO on both [Ca2+]i and amylase release were reversed by the sulfhydryl reducing agent, dithiothreitol (2 mM). Pretreatment of acinar cells with high concentration of ryanodine (50 microM) reduced the PAO-evoked calcium release. However, PAO was still able to release a small fraction of Ca2+ from acinar cells in which agonist-releasable Ca2+ pools had been previously depleted by thapsigargin (0.5 microM) and ryanodine receptors were blocked by 50 microM ryanodine. We conclude that, in pancreatic acinar cells, PAO mainly releases Ca2+ from the ryanodine-sensitive calcium pool and consequently induces amylase secretion. These effects are likely to be due to the oxidizing effects of this compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号