首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The effects of MDMA administration on oxidative stress markers in rat eye and hippocampus, and the neuroprotective effects of the antioxidant 3,4-dihydro-6-hydroxy-7-methoxy-2,2-dimethyl-1(2H)-benzopyran (CR-6) have been studied. MDMA effects on liver were used for comparison with those in eye and hippocampus and to test CR-6 protective effects. Another goal was to test for apoptosis in retinal cells, as it is known that happens in liver and brain. After 1 week of ecstasy administration, malondialdehyde (MDA) concentration increased, glutathione peroxidase (GPx) activity and glutathione (GSH) content decreased in liver, as previously described. MDA concentration increased and GPx activity decreased in hippocampus; whereas no change was observed in GSH concentration. MDMA decreased ocular GSH concentration and GPx activity; no change was observed in MDA concentration. The number of TUNEL-positive nuclei increased significantly in rat retinas after 1 week of MDMA administration. CR-6 normalized the modifications in liver, hippocampus and retina mentioned above.  相似文献   

2.
Liu L  Mao SZ  Liu XM  Huang X  Xu JY  Liu JQ  Luo GM  Shen JC 《Biomacromolecules》2008,9(1):363-368
For imitating the active site of antioxidant selenoenzyme glutathione peroxidase (GPx), an artificial enzyme selenosubtilisin was employed as a scaffold for reconstructing substrate glutathione (GSH) specific binding sites by a bioimprinting strategy. GSH was first covalently linked to selenosubtilisin to form a covalent complex GSH-selenosubtilisin through a Se-S bond, then the GSH molecule was used as a template to cast a complementary binding site for substrate GSH recognition. The bioimprinting procedure consists of unfolding the conformation of selenosubtilisin and fixing the new conformation of the complex GSH-selenosubtilisin. Thus a new specificity for naturally occurring GPx substrate GSH was obtained. This bioimprinting procedure facilitates the catalytic selenium moiety of the imprinted selenosubtilisin to match the reactive thiol group of GSH in the GSH binding site, which contributes to acceleration of the intramolecular catalysis. These imprinted selenium-containing proteins exhibited remarkable rate enhancement for the reduction of H2O2 by GSH. The average GPx activity was found to be 462 U/micromol, and it was approximately 100 times that for unimprinted selenosubtilisin. Compared with ebselen, a well-known GPx mimic, an activity enhancement of 500-fold was observed. Detailed steady-state kinetic studies demonstrated that the novel selenoenzyme followed a ping-pong mechanism similar to the naturally occurring GPx.  相似文献   

3.
Previous studies revealed that oxidative stress could be an important component of the mechanism of organophosphate (OP) compound toxicity. The aim of the present study was to investigate both prophylactic and therapeutic effects of melatonin against fenthion-induced oxidative stress in rats. Therefore, we determined the changes in the levels of reduced glutathione (GSH) and malondialdehyde (MDA) in the whole blood, brain, pectoral muscle, liver, lung, heart, kidney, pancreas, and jejunum. Also, the changes in the levels of serum nitrite and nitrate, ascorbic acid, retinal, b-carotene, and ceruloplasmin were measured. In addition, activities of enzymatic antioxidants superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) in erythrocyte of normal and experimental animals were measured. It was found that fenthion administration increased the levels of MDA in all tissues and decreased or increased the levels of GSH in some tissues. In comparison to nitrate, nitrite and ascorbic acid levels in the serum of experimental groups, there was no significant difference between groups. However, fenthion toxicity led to decrease in retinol and β-carotene levels; melatonin administration significantly prevented this decrease. Serum ceruloplasmin level was increased due to fenthion administration, but prophylactic and therapeutic melatonin administration inhibited the increase in ceruloplasmin level of serum. There was no significant change in SOD levels in melatonin-administered groups. Melatonin modulates the fenthion-induced changes in the activities of GPx and CAT. In conclusion, the results of the current study revealed that OP toxicity, induced by fenthion, activated oxidant systems in all antioxidant systems in some tissues. Melatonin administration led to a marked increase in antioxidant activity and inhibited lipid peroxidation in most of tissues.  相似文献   

4.
Husain  K.  Morris  C.  Whitworth  C.  Trammell  G.L.  Rybak  L.P.  Somani  S.M. 《Molecular and cellular biochemistry》1998,178(1-2):127-133
This study was designed to investigate the cisplatin-induced alteration in renal antioxidant system and the nephroprotection with ebselen. Male Wistar rats were injected with (1) vehicle control; (2) cisplatin; (3) ebselen; and (4) cisplatin plus ebselen. Rats were sacrificed three days post-treatment and plasma as well as kidney were isolated and analyzed. Plasma creatinine increased 598% following cisplatin administration alone which decreased by 158% with ebselen pretreatment. Cisplatin-treated rats showed a depletion of renal glutathione (GSH) levels (52% of control), while cisplatin plus ebselen injected rats had GSH values close to the controls. Antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities decreased 38, 75 and 62% of control, respectively, and malondialdehyde (MDA) levels increased 174% of control following cisplatin administration, which were restored to control levels after ebselen treatment. The renal platinum level did not significantly change with ebselen pretreatment. This study suggests that the protection offered by ebselen against cisplatin-induced nephrotoxicity is partly related to the sparing of antioxidant system.  相似文献   

5.
Burak Kaptaner 《Cytotechnology》2016,68(4):1577-1583
The present study was conducted to determine cytotoxic effects of 4-octylphenol (4-OP) on primary cultured hepatocytes of pearl mullet (Alburnus tarichi). Lactate dehydrogenase (LDH) release, malondialdehyde (MDA) level, antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST)] and glutathione (GSH) content were measured after 24-h exposure to 4-OP. 4-OP caused dose- and time-dependent increases in LDH release. Significant induction of MDA level and decrease in GSH content were found. SOD and GPx activities were decreased while GST activity was increased. These findings suggest that 4-OP leads to cytotoxicity by depressing antioxidant defenses in fish hepatocytes.  相似文献   

6.
The effect of Dipel (D), a Bacillus thuringiensis-based bioinsecticide, on hepatic antioxidant enzyme activities and lipid peroxidation in rat liver was investigated. Administration of D in a dose of 1 mg/100 g body mass for 4 successive days increased the activities of glutathione peroxidase (GPx), glutathione reductase (GR) and the level of malondialdehyde (MDA) in rat hepatocytes. The activity of superoxide dismutase (SOD) and glutathione (GSH) level were decreased. Administration of D in rats pretreated with alpha-tocopherol (alphaT) or acetylsalicylic acid (ASA) decreased the activities of GPx, GR and MDA levels, while the GSH level was increased compared with rats treated with D alone. The SOD activity was increased in rats pretreated with alphaT before D, but decreased on pretreatment with ASA, compared with rats treated with D alone. The results indicated that D induced oxidative stress in rat liver that has been protected by prior administration of alphaT or ASA.  相似文献   

7.
Nasturtium officinale R. Br. (Brassicaceae) has been used as a home remedy by the people of south eastern (SE) region of Iran as a medicinal plant. This therapeutical application has been attributed to Nasturtium officinale (N. officinale) antioxidant capacity which is mostly tested by means of cell-free assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP). In addition, the antioxidant effect of N. officinale extract has been investigated in hypercholesterolaemic rats in vivo. The results revealed that the extract has notable scavenging activity against DPPH radicals as well as potent reducing power in FRAP assay. Intragastric administration of N. officinale (500 mg/kg body weight per day) to groups of hypercholesterolaemic rats for 30 days lowered their blood total cholesterol (TC), triglyceride (TG), and low density lipoprotein cholesterol (LDL-C) levels by 37, 44 and 48%, respectively. However, the blood high density lipoprotein cholesterol (HDL-C) levels in the same treated rats increased by 16%. To evaluate the mechanism(s) of action, we studied the antioxidative potential of N. officinale extract in terms of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activities and also the level of reduced glutathione (GSH) in the liver tissues. In addition, hepatic tissue malondialdehyde level (MDA, an index of lipid peroxidation) was also determined. Under hypercholesterolaemic condition, hepatic MDA was increased. Moreover, our data indicated GSH depletion along with significant reduction in the activities of CAT and SOD in rats fed high-fat diet rats. On the other hand, significant elevation in the activities of GPx and GR were seen in the same group of rats. Treatment of hypercholesterolaemic rats with N. officinale extract significantly increased the GSH level along with enhanced CAT and SOD activities in liver tissues. Furthermore, N. officinale extract significantly decreased hepatic MDA as well as GPx and GR activities in plant-treated rats. Based on our data, it can be concluded that N. officinale has a high hypolipidaemic activity and this may be attributed to its antioxidative potential.  相似文献   

8.
This study was aimed at examining the role of oxygen and nitrogen reactive species in a model of experimental uveitis upon intravitreal injection of bacterial endotoxin to albino New Zealand rabbits. The inflammatory response was evaluated in terms of: (i) the integrity of the blood aqueous barrier (protein and cell content in samples of aqueous humor), (ii) histopathological changes of the eyes, (iii) clinical evaluation (with a score index based on clinical symptoms), and (iv) the concentration of malondialdehyde (MDA), in aqueous humor, as a marker of oxidative stress. Betamethasone was used as reference treatment, superoxide dismutase as quencher of superoxide anion, L-N(G)-nitro-L-arginine-methyl-esther (L-NAME) and chlorpromazine as nitric oxide synthase inhibitors, and ebselen, a glutathione peroxidase mimic, as peroxynitrite reductant. All the substances were injected subconjunctivally to the rabbits immediately after the intravitreal endotoxin injection. Ebselen was the only treatment able to decrease MDA concentration to control values, exerting an effect similar to that elicited by L-NAME on the rest of the parameters tested. The data presented render ebselen a notable choice for the treatment of uveitis, with implications for clinical trials.  相似文献   

9.
The aim of this study was to investigate the effects of supplemental antioxidant vitamins and minerals on lipid peroxidation and on the antioxidant systems in rabbits exposed to X-rays. The rabbits were divided into two experimental groups and one control group, each group containing seven rabbits. The first group (VG) received daily oral doses of vitamin E (460 mg/kg live weight) and vitamin C (100 mg/kg live weight). The second group (MG) was fed a mineral-enriched diet that contained 60 mg manganese chloride, 40 mg zinc sulfate, and 5 mg copper sulfate per kilogram of feed. The third group served as controls and received only a standard diet. Blood samples were obtained before and after the supplementation with vitamins or minerals, as well as before and after irradiation with a total dose of 550-rad X-rays. The blood samples were analyzed for their content of malondialdehyde (MDA), plasma vitamins C and E, retinol, reduced glutathione (GSH), and glutathione peroxidase activity (GPx). After irradiation, the control group showed increased levels of MDA and activity of GPx (p<0.05), whereas the levels of GSH, vitamin C, and vitamin E were decreased. In the VG, the concentration of MDA was lower (p<0.05), and the concentration of GSH and vitamins C and E were higher (p<0.05) when compared to controls. In the MG, the concentrations of MDA, GSH, vitamin C, and retinol were not affected by the mineral administration and radiation. The level of vitamin E in the MG increased with mineral administration (p<0.05), but decreased after irradiation (p<0.05). For the control group, the level of GSH was higher than in the two experimental groups. After irradiation, the VG animals had vitamin E and C levels that were higher than in MG and control groups (p<0.05). The activity of GPx was not affected by vitamin or mineral supplementation or by irradiation. We conclude that the supplementation with antioxidant vitamins and minerals may serve to reinforce the antioxidant systems, thus having a protective effect against cell damage by X-rays.  相似文献   

10.
Horseradish peroxidase (HRP) inhibition and glutathione peroxidase (GPx) activities of ebselen and some related derivatives are described. These studies show that ebselen and ebselen ditelluride (EbTe(2)) with significant antioxidant activity, inhibit the HRP-catalyzed oxidation reactions. In addition, inhibition of lipid peroxidation and singlet oxygen quenching studies were carried out. Although the inhibition of HRP by ebselen is comparable with that of EbTe(2), the inhibitory effect on gamma-radiation induced lipid peroxidation and the GPx activity of ebselen is found to be much higher than that of EbTe(2).  相似文献   

11.
Antioxidant enzymes, total glutathione (GSH), and ascorbic acid (ASA) were determined in whole body homogenates of nondiapausing larvae, diapausing larvae during the diapausing period (October, December, and February), and in pupae emerged from both diapausing and nondiapausing larvae of the European corn borer (Ostrinia nubilalis, Hubn., Lepidoptera: Pyralidae). The activities of catalase, selenium nondependent glutathione peroxidase (GPx), and glutathione-S-transferase (GST), as well as the content of GSH and ASA, were found to vary throughout the larval diapause. Compared to diapausing larvae, nondiapausing larvae were higher in levels of catalase, GPx, GST, and dehydroascorbate reductase (DHAR) activity. GSH content was also increased. However, nondiapausing larvae contained less ASA than diapausing ones. Pupae had higher GPx and GST activity and an increased ASA content compared to larvae. The pupae emerged from nondiapausing larvae had higher GST, glutathione reductase (GR), and DHAR activities, but lower GPx activity and ASA content than those emerged from diapausing larvae. Correlation analysis revealed differences in the way the antioxidant level is equilibrated for a particular stage and developmental pattern. The results suggest that cellular antioxidants are involved in both the protection of cells and the regulation of redox levels during the pre-adult stages of Ostrinia nubilalis. Arch. Insect Biochem. Physiol. 55:79-89, 2004.  相似文献   

12.
Chronic lymphocytic leukemia (CLL) is a neoplastic disease susceptible to antioxidant enzyme alterations and oxidative stress. We have examined the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and the oxidized/reduced glutathione (GSSG/GSH) ratio together with the levels of malondialdehyde (MDA) and 8-oxo-2'-deoxyguanosine (8-oxo-dG) in lymphocytes of CLL patients and compared them with those of normal subjects of the same age. SOD and CAT activity decreased in CLL lymphocytes while GPx activity increased. GSH content of CLL lymphocytes also increased, and GSSG concentration remained constant. Thus, a reduced GSSG/GSH ratio was obtained. The oxidation product MDA, and the damaged DNA base 8-oxo-dG were also increased in CLL. The observed changes in enzyme activities, GSSG/GSH ratio, and MDA were significantly enhanced as the duration of the disease increased in years. The results support a predominant oxidative stress status in CLL lymphocytes and emphasize the role of the examined parameters as markers of the disease evolution.  相似文献   

13.
目的探讨实验性腹膜炎时,内毒素与肺损伤的变化.方法用酵母多糖A腹腔注射制备大鼠急性实验性腹膜炎模型,随机分为模型组和对照组;观察实验性腹膜炎时,肺损伤变化.结果模型组内毒素、肺匀浆脂质过氧化物,以及白细胞计数均明显增高;而还原谷胱甘肽(GSH)明显降低,与对照组比差异有显著性(P<0.05).结论实验性腹膜炎时,内毒素的形成、细菌因子的释放及脂质过化与肺损害有一定的联系.  相似文献   

14.
Methyl parathion (MP), an organophosphate widely applied in agriculture and aquaculture, induces oxidative stress due to free radical generation and changes in the antioxidant defense system. The antioxidant roles of selenium (Se) were evaluated in Brycon cephalus exposed to 2 mg L(-1) of Folisuper 600 BR (MP commercial formulation - MPc, 600 g L(-1)) for 96 h. Catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH) and lipid peroxidation (LPO) levels in the gills, white muscle and liver were evaluated in fish fed on diets containing 0 or 1.5 mg Se kg(-1) for 8 weeks. In fish treated with a Se-free diet, the MPc exposure increased SOD and CAT activities in all tissues. However, the GPx activity decreased in white muscle and gills whereas no alterations were observed in the liver. MPc also increased GST activity in all tissues with a concurrent decrease in GSH levels. LPO values increased in white muscle and gills and did not change in liver after MPc exposure. A Se-supplemented diet reversed these findings, preventing increases in LPO levels and concurrent decreases in GPx activity in gills and white muscle. Similarly, GSH levels were maintained in all tissue after MPc exposure. These results suggest that dietary Se supplementation protects cells against MPc-induced oxidative stress.  相似文献   

15.
The antiulcerogenic effect of diffractaic acid (DA) isolated from Usnea longissima, a lichen species, on indomethacin (IND)-induced gastric lesions was investigated in rats. Administration of 25, 50, 100 and 200 mg/kg doses of DA and ranitidine (RAN) (50 mg/kg dose) reduced the gastric lesions by 43.5%, 52.9%, 91.4%, 96.7% and 72.7%, respectively. It is known that oxidative stress leads to tissue injury in organisms. Thus, in all treated groups of rats, the in vivo activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and the levels of reduced glutathione (GSH) and lipid peroxidation (LPO) were evaluated. IND caused oxidative stress, which resulted in LPO in tissues, by decreasing the levels of GPx, SOD and GSH as compared to healthy rats. In contrast to IND, the administration of DA and RAN showed a significant decrease in LPO level and an increase in tissue SOD, GPx and GSH levels. However, while CAT activity was significantly increased by the administration of IND, the administration of DA and RAN decreased CAT activity. The administration of IND also increased the myeloperoxidase (MPx) activity, which shows neutrophil infiltration into the gastric mucosal tissues. In contrast to IND, the administration of DA and RAN decreased MPx activity. The changes in activities of gastric mucosal nitric oxide synthases (NOS) throughout the development of gastric mucosal damage induced by IND were also studied. A decrease in constitutive NOS (cNOS) activity and an increase in inducible NOS (iNOS) activity were determined in gastric damaged tissues induced by IND. The administration of DA (100 mg/kg dose) and RAN reversed the activities of iNOS and cNOS. These results suggest that the gastroprotective effect of DA can be attributed to its enhancing effects on antioxidant defense systems as well as reducing effects of neutrophil infiltration.  相似文献   

16.
Hyperoxic adult rats have prolonged survival and reduced morphological evidence of lung injury when treated with a single dose of bacterial endotoxin; this effect is mediated by an augmentation of antioxidant enzyme activity in lung homogenate. To determine whether endotoxin would prolong survival and influence antioxidant enzyme levels in lambs whose physiological response to O2 breathing can be serially measured, we administered a single intravenous dose of endotoxin (0.75 microgram/kg body wt) to 13 lambs before exposing them to greater than 95% O2 (n = 11) or air (n = 2). Seven additional lambs were placed in O2 after receiving only saline vehicle. All lambs had been instrumented to measure pulmonary vascular pressures and cardiac output, and 10 lambs had lung lymph fistulas. O2-exposed control lambs developed noncardiogenic pulmonary edema and respiratory failure within 85 +/- 10 h (range 76-110 h); antioxidant enzymes were not increased, but reduced glutathione (GSH) levels fell and oxidized glutathione (GSSG) increased, reflecting the oxidant stress of O2 exposure. By contrast, endotoxin-treated O2-exposed lambs had a delayed increase in microvascular permeability to protein, a reduced rate of lung edema formation, normal gas exchange after 72 h in O2, and prolonged survival (136 +/- 15 h; range 90-160 h; all variables P less than 0.05). Despite prolonged survival, postmortem lung water content was no greater in the lambs that received endotoxin. Treatment with endotoxin did not increase antioxidant enzyme levels in lung homogenate, but levels of GSH relative to GSSG were significantly elevated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The influence of two organic selenocompounds and sodium selenite on oxidant processes in rat brain tissue was investigated. The study was performed on male Wistar rats. The animals were divided into four groups: I—control; II—administered with sodium selenite; III—provided with selenoorganic compound A of chain structure 4-(o-tolyl-)-selenosemicarbazide of 2-chlorobenzoic acid and IV—provided with selenoorganic compound B of ring structure 3-(2-chlorobenzoylamino-)-2-(o-tolylimino-)-4-methyl-4-selenazoline. Rats were treated by stomach tube at a dose of 5 × 10?4 mg of selenium/g of b.w. once a day for a period of 10 days. In brain homogenates total antioxidant status (TAS), activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), concentrations of ascorbic acid (AA) and reduced glutathione (GSH) as well as concentration of malonyl dialdehyde (MDA) were determined. TAS was insignificantly diminished in all selenium-supplemented groups versus control. SOD was not significantly influenced by administration of selenium. GPx was markedly decreased in group III versus control, whereas increased in group IV versus control and group III. Selenosemicarbazide depleted AA in well-marked way versus group II. GSH was significantly depressed in group III versus both control and group II and diminished in group IV versus group II. MDA was significantly decreased in group III versus both control and group II, whereas in group IV increased versus group III. As selenazoline A did not decrease elements of antioxidant barrier and increased GPx activity, it seems to be a promising agent for future studies concerning its possible application as a selenium supplement.  相似文献   

18.
Antioxidants can be useful as a supportive therapy in diabetes, and we try to elucidate some of the mechanisms by which these compounds are able to protect from diabetic complications. For this purpose we have assayed, in vitro and in vivo, the ability of CR-6 (3,4-dihydro-6-hydroxy-7-methoxy-2,2-dimethyl-1(2H)-benzopyran), an antioxidant able to scavenge nitrogen reactive species, to protect glutathione peroxidase (GPx) activity. Glucose, in vitro, inhibited GPx activity in a concentration-dependent manner; CR-6 was able to protect GPx activity from glucose-induced inactivation. Alloxan-induced experimental diabetes in mice promoted oxidative stress in the retina and hippocampus, after 3 weeks of hyperglycemia. CR-6 administration prevented not only the alterations of oxidative stress markers (tissue GSH and malondialdehyde (MDA) concentration and GPx activity) but also the impairment of retinal function (as assessed by the modifications in electroretinogram b-wave amplitude). The findings herein confirm the role of nitrogen reactive species in diabetes; therefore, antioxidants effectively quenching these species, such as CR-6, should be considered for the adjuvant treatment of diabetes.  相似文献   

19.
Acetaldehyde, the primary ethanol metabolite, has been implicated in the pathogenesis of alcoholic liver disease, but the mechanism involved is still under investigation. This study aims at the search for direct in vitro effects of different concentrations of acetaldehyde (30, 100 and 300microM) on the activities of glutathione reductase (GR), glutathione peroxidase (GPx) from liver supernatants, and the thiol-peroxidase activity of ebselen. They did not change after pre-incubation with acetaldehyde, which suggests that acetaldehyde does not have any direct effect. Nor were direct effects of acetaldehyde toward thiols, such as dithioerythritol and glutathione (GSH), observed either, even though GSH - measured as non-protein thiols from liver supernatants - were oxidized in the presence of acetaldehyde. In addition, acetaldehyde (up to 300microM) significantly oxidized GSH when incubated in the presence of commercially available gamma-glutamyltranspeptidase (GGT), but not in the presence of glutathione-S-transferase. The interaction between ebselen and GSH was also evaluated in an attempt to better understand the possible link between acetaldehyde and nucleophilic selenol groups. The formation and stability of ebselen intermediaries, produced in the chemical interaction between GSH and ebselen, were not affected by acetaldehyde either. Overall, the acetaldehyde oxidation of hepatic low-molecular thiols depends on mouse liver constituents and GGT is proposed as an important enzyme involved in this phenomenon. Thiol depletion, a phenomenon usually observed in the livers of alcoholic patients, can be related to GSH metabolism, and the involvement of GGT may reflect a molecular mechanism involved in thiol oxidation.  相似文献   

20.
The aim of this work was to investigate as to how neurons and glial cells separated from the brain cortex respond to oxidative stress induced by aluminum. Female SD rats were exposed to aluminum at the dose level of 100 mg/kg b.w. for 8 weeks. Neuronal and glial cell-enriched fractions were obtained from rat cerebral cortex by sieving the trypsinated homogenate through a series of nylon meshes, followed by centrifugation on ficoll density gradient. Total glutathione content, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-s-transferase (GST) along with antioxidant enzymes superoxide dismutase (SOD), catalase were estimated in neuronal and glial-enriched fractions in both control (N-c and G-c) and aluminum exposed animals (N-a and G-a). Secondary products of lipid peroxidation that is MDA levels were estimated by measuring the (TBARS) levels. Our results indicate that TBARS levels were significantly higher in glial cell fraction of unexposed controls (Gc) than the neuronal cells (Nc). Correspondingly the glial cells had higher levels of GSH, GSSG, GPx and GST where as neurons had higher levels of catalase, SOD and GR. Following aluminum exposures significant increase in the TBARS levels was observed in neurons as compared to glial cells which also showed a significant decrease in SOD and catalase activity. The decrease in the TBARS levels in the glial cells could be related to the increase in the GSH levels, GR activity, and GST activity which were found to be increased in glial enriched fractions following aluminum exposure. The increase in activity of various enzymes viz GR, GST in glial cells as compared to neurons suggests that glial cells are actively involved in glutathione homeostasis. Our conclusion is that glial and neurons isolated from rat cerebral cortex show a varied pattern of important antioxidant enzymes and glial cells are more capable of handling the oxidative stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号