首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4T1 metastatic breast cancer model have been widely used to study stage IV human breast cancer. However, the frequent inoculation of a large number of cells, gives rise to fast growing tumors, as well as to a surprisingly low metastatic take rate. The present work aimed at establishing the conditions enabling high metastatic take rate of the triple-negative murine 4T1 syngeneic breast cancer model. An 87% 4T1 tumor incidence was observed when as few as 500 cancer cells were implanted. 4T1 cancer cells colonized primarily the lungs with 100% efficiency, and distant lesions were also commonly identified in the mesentery and pancreas. The drastic reduction of the number of inoculated cells resulted in increased tumor doubling times and decreased specific growth rates, following a Gompertzian tumor expansion. The established conditions for the 4T1 mouse model were further validated in a therapeutic study with peguilated liposomal doxorubicin, in clinical used in the setting of metastatic breast cancer. Inoculated cell density was proven to be a key methodological aspect towards the reproducible development of macrometastases in the 4T1 mouse model and a more reliable pre-clinical assessment of antimetastatic therapies.  相似文献   

2.
Breast cancer incidence and mortality increase with age. A better understanding of the biological behavior of metastatic and nonmetastatic breast tumors in older subjects may help to develop improved breast cancer therapies. In this study, we used syngeneic metastatic (4TO7cg) and nonmetastatic (64pT) mouse breast tumor models at three age levels to evaluate various characteristics that are considered to be important for effective anti-breast cancer immunotherapy. These included tumor size and growth, metastases, vascularization, gene expression levels of the tumor-associated antigen (TAA) Mage-b (homologous to human MAGE-B) in primary breast tumors and metastases, and the presence of CD4(+) and CD8(+) T cells in the inguinal lymph nodes at the site of the tumor. The primary breast tumors and metastases were generated by injection of mouse mammary tumor cell lines 4TO7cg or 64pT into a mammary fat pad of normal 3-, 9-, or 21/24-month old BALB/c mice. In the nonmetastatic breast tumor model, significantly smaller tumors were observed in old compared with young mice. This was associated with a significant increase in the percentage of CD8(+) T cells in inguinal lymph nodes and significantly higher Mage-b expression levels in the primary tumors at old age. In the metastatic (4TO7cg) breast tumor model, a less pronounced, not statistically significant, smaller tumor size was found in the old mice, without a difference in the percentage of CD8(+) T cells or Mage-b expression levels. However, in this mouse model almost all metastases showed high levels of Mage-b expression (2- to 3-fold higher than the primary tumors in the same animals) regardless of age. These results indicate that the metastatic and nonmetastatic breast tumor models could be useful model systems to analyze how breast cancer vaccines for humans can be tailored to old age.  相似文献   

3.
4.

Background

Tumor tolerance and immune suppression remain formidable obstacles to the efficacy of immunotherapies that harness the immune system to eradicate breast cancer. A novel syngeneic mouse model of breast cancer metastasis was developed in our lab to investigate mechanisms of immune regulation of breast cancer. Comparative analysis of low-metastatic vs. highly metastatic tumor cells isolated from these mice revealed several important genetic alterations related to immune control of cancer, including a significant downregulation of cd1d1 in the highly metastatic tumor cells. The cd1d1 gene in mice encodes the MHC class I-like molecule CD1d, which presents glycolipid antigens to a specialized subset of T cells known as natural killer T (NKT) cells. We hypothesize that breast cancer cells, through downregulation of CD1d and subsequent evasion of NKT-mediated antitumor immunity, gain increased potential for metastatic tumor progression.

Methodology/Principal Findings

In this study, we demonstrate in a mouse model of breast cancer metastasis that tumor downregulation of CD1d inhibits iNKT-mediated antitumor immunity and promotes metastatic breast cancer progression in a CD1d-dependent manner in vitro and in vivo. Using NKT-deficient transgenic mouse models, we demonstrate important differences between type I and type II NKT cells in their ability to regulate antitumor immunity of CD1d-expressing breast tumors.

Conclusions/Significance

The results of this study emphasize the importance of determining the CD1d expression status of the tumor when tailoring NKT-based immunotherapies for the prevention and treatment of metastatic breast cancer.  相似文献   

5.
Progressive growth of the P815 mastocytoma in an immunocompetent host evokes the generation of an antitumor immune response that can be measured in terms of the production of cytolytic Ly-1+2+ T cells in the draining lymph node and spleen. This immunity, designated concomitant immunity, is present on day 6 of tumor growth, peaks on day 9, and decays progressively thereafter. It fails to develop in mice made T cell deficient by thymectomy and lethal whole-body gamma-radiation, and reconstituted with syngeneic bone marrow cells (TXB mice). Employment of a mouse survival assay, capable of enumerating metastatic P815 cells in cell suspensions, showed that the P815 tumor metastasizes to the draining lymph node and spleen at the same rate in normal and TXB mice for the first 6 days of growth of an intradermal P815 tumor. By day 6 of tumor growth there were approximately 10(3) P815 cells in the draining lymph node in both types of mice. However, during the generation of concomitant immunity between days 6 and 9, the number of metastatic P815 cells in the draining lymph nodes and spleens of normal tumor-bearing mice declined by nearly 90%. After day 12, however, the number of tumor cells in the nodes and spleens increased concordantly with the decay of concomitant immunity. These findings, together with the demonstration that T cell-deficient mice failed to restrain the number of metastatic P815 cells in the draining lymph node and spleen, suggest that concomitant immunity is an important defense mechanism against the development of systemic disease. Additional evidence consistent with this interpretation was provided by studies which showed that adoptive immunization with spleen cells from concomitant immune donors significantly prolonged the median survival time of TXB tumor-bearing mice by destroying a substantial proportion of P815 tumor cells already seeded in the draining lymph node. Adoptive immunization also delayed the appearance of metastatic tumor cells in the spleen.  相似文献   

6.
Although early detection of breast cancer improved in recent years, prognosis of patients with late stage breast cancer remains poor, mostly due to development of multidrug resistance (MDR) followed by tumor recurrence. Cancer stem cells (CSCs), with higher drug efflux capability and other stem cell-like properties, are concentrated in a side population (SP) of cells, which were proposed to be responsible for MDR and tumor repopulation that cause patients to succumb to breast cancer. Therefore, targeting of CSCs as an adjuvant to chemotherapy should be able to provide a more effective treatment of this disease. Here, we used IMD-0354, an inhibitor of NF-κB, identified for targeting CSCs, in a combination therapy with doxorubicin encapsulated in targeted nanoparticles. IMD-0354 did target CSCs, evidenced by a decrease in the SP, demonstrated by the inhibition of the following: dye/drug efflux, reduction in ABC transporters as well as in colony formation in soft agar and low attachment plates. Decrease of stem-like gene expression of Oct4, Nanog and Sox2, and apoptosis resistance related to the Survivin gene also was observed after treatment with this compound. In addition, IMD-0354 targeted non-CSCs as indicated by reducing viability and increasing apoptosis. Targeted drug delivery, achieved with a legumain inhibitor, proved to enhance drug delivery under hypoxia, a hallmark of the tumor microenvironment, but not under normoxia. Together, this allowed a safe, non-toxic delivery of both anticancer agents to the tumor microenvironment of mice bearing syngeneic metastatic breast cancer. Targeting both bulk tumor cells with a chemotherapeutic agent and CSCs with IMD-0354 should be able to reduce MDR. This could eventually result in decreasing tumor recurrences and/or improve the outcome of metastatic disease.  相似文献   

7.
It was recently proposed that UDP-galactose:ceramide galactosyltransferase (UGT8), enzyme responsible for synthesis of galactosylceramide (GalCer), is a significant index of tumor aggressiveness and a potential marker for the prognostic evaluation of lung metastases in breast cancer. To further reveal the role of UGT8 and GalCer in breast cancer progression, tumorigenicity and metastatic potential of control MDA-MB-231 cells (MDA/LUC) and MDA-MB-231 cells (MDA/LUC-shUGT8) with highly decreased expression of UGT8 and GalCer after stable expression of shRNA directed against UGT8 mRNA was studied in vivo in athymic nu/nu mice. Control MDA/LUC cells formed tumors and metastatic colonies much more efficiently in comparison to MDA/LUC-shUGT8 cells with suppressed synthesis of GalCer after their, respectively, orthotopic and intracardiac transplantation. These findings indicate that UGT8 and GalCer have a profound effect on tumorigenic and metastatic properties of breast cancer cells. In accordance with this finding, immunohistochemical staining of tumor specimens revealed that high expression of UGT8 accompanied by accumulation of GalCer in MDA-MB-231 cells is associated with a much higher proliferative index and a lower number of apoptotic cells in comparison to the MDA/LUC-shUGT8 cells. In addition, it was found that expression of UGT8 in MDA-MB-231 cells increased their resistance to apoptosis induced by doxorubicin in vitro. Therefore, these data suggest that accumulation of GalCer in tumor cells inhibits apoptosis, which would facilitates metastatic cells to survive in the hostile microenvironment of tumor in target organ.  相似文献   

8.
Surgical resection is an essential treatment for most cancer patients, but surgery induces dysfunction in the immune system and this has been linked to the development of metastatic disease in animal models and in cancer patients. Preclinical work from our group and others has demonstrated a profound suppression of innate immune function, specifically NK cells in the postoperative period and this plays a major role in the enhanced development of metastases following surgery. Relatively few animal studies and clinical trials have focused on characterizing and reversing the detrimental effects of cancer surgery. Using a rigorous animal model of spontaneously metastasizing tumors and surgical stress, the enhancement of cancer surgery on the development of lung metastases was demonstrated. In this model, 4T1 breast cancer cells are implanted in the mouse mammary fat pad. At day 14 post tumor implantation, a complete resection of the primary mammary tumor is performed in all animals. A subset of animals receives additional surgical stress in the form of an abdominal nephrectomy. At day 28, lung tumor nodules are quantified. When immunotherapy was given immediately preoperatively, a profound activation of immune cells which prevented the development of metastases following surgery was detected. While the 4T1 breast tumor surgery model allows for the simulation of the effects of abdominal surgical stress on tumor metastases, its applicability to other tumor types needs to be tested. The current challenge is to identify safe and promising immunotherapies in preclinical mouse models and to translate them into viable perioperative therapies to be given to cancer surgery patients to prevent the recurrence of metastatic disease.  相似文献   

9.

Background

Recent studies suggested that induction of epithelial-mesenchymal transition (EMT) might confer both metastatic and self-renewal properties to breast tumor cells resulting in drug resistance and tumor recurrence. TGFβ is a potent inducer of EMT and has been shown to promote tumor progression in various breast cancer cell and animal models.

Principal Findings

We report that chemotherapeutic drug doxorubicin activates TGFβ signaling in human and murine breast cancer cells. Doxorubicin induced EMT, promoted invasion and enhanced generation of cells with stem cell phenotype in murine 4T1 breast cancer cells in vitro, which were significantly inhibited by a TGFβ type I receptor kinase inhibitor (TβRI-KI). We investigated the potential synergistic anti-tumor activity of TβR1-KI in combination with doxorubicin in animal models of metastatic breast cancer. Combination of Doxorubicin and TβRI-KI enhanced the efficacy of doxorubicin in reducing tumor growth and lung metastasis in the 4T1 orthotopic xenograft model in comparison to single treatments. Doxorubicin treatment alone enhanced metastasis to lung in the human breast cancer MDA-MB-231 orthotopic xenograft model and metastasis to bone in the 4T1 orthotopic xenograft model, which was significantly blocked when TβR1-KI was administered in combination with doxorubicin.

Conclusions

These observations suggest that the adverse activation of TGFβ pathway by chemotherapeutics in the cancer cells together with elevated TGFβ levels in tumor microenvironment may lead to EMT and generation of cancer stem cells resulting in the resistance to the chemotherapy. Our results indicate that the combination treatment of doxorubicin with a TGFβ inhibitor has the potential to reduce the dose and consequently the toxic side-effects of doxorubicin, and improve its efficacy in the inhibition of breast cancer growth and metastasis.  相似文献   

10.
Metastasis is the main cause of death in cancer patients. To improve the outcomes of patients undergoing a surgery, new adjuvant therapies that can effectively inhibit metastases have to be developed. Studies have shown that flavonoid naringenin, a natural product that is mainly present in grapes and citrus, may contribute to cancer prevention. It has many advantages compared to traditional chemotherapeutic drugs, such as low toxicity. To determine whether naringenin can also inhibit metastases, a breast cancer resection model that mimics clinical situations was established. We found that orally administered naringenin significantly decreased the number of metastatic tumor cells in the lung and extended the life span of tumor resected mice. Flow cytometry analysis revealed that T cells displayed enhanced antitumor activity in naringenin treated mice, with an increased proportion of IFN-γ and IL-2 expressing T cells. In vitro studies further demonstrated that relief of immunosuppression caused by regulatory T cells might be the fundamental mechanism of metastasis inhibition by naringenin. These results indicate that orally administered naringenin can inhibit the outgrowth of metastases after surgery via regulating host immunity. Thus, naringenin can be an ideal surgical adjuvant therapy for breast cancer patients.  相似文献   

11.
Despite evidence that antitumor immunity can be protective against renal cell carcinoma (RCC), few patients respond objectively to immunotherapy and the disease is fatal once metastases develop. We asked to what extent combinatorial immunotherapy with Adenovirus-encoded murine TNF-related apoptosis-inducing ligand (Ad5mTRAIL) plus CpG oligonucleotide, given at the primary tumor site, would prove efficacious against metastatic murine RCC. To quantitate primary renal and metastatic tumor growth in mice, we developed a luciferase-expressing Renca cell line, and monitored tumor burdens via bioluminescent imaging. Orthotopic tumor challenge gave rise to aggressive primary tumors and lung metastases that were detectable by day 7. Intra-renal administration of Ad5mTRAIL+CpG on day 7 led to an influx of effector phenotype CD4 and CD8 T cells into the kidney by day 12 and regression of established primary renal tumors. Intra-renal immunotherapy also led to systemic immune responses characterized by splenomegaly, elevated serum IgG levels, increased CD4 and CD8 T cell infiltration into the lungs, and elimination of metastatic lung tumors. Tumor regression was primarily dependent upon CD8 T cells and resulted in prolonged survival of treated mice. Thus, local administration of Ad5mTRAIL+CpG at the primary tumor site can initiate CD8-dependent systemic immunity that is sufficient to cause regression of metastatic lung tumors. A similar approach may prove beneficial for patients with metastatic RCC.  相似文献   

12.

Introduction

Abnormal cancer metabolism creates a glycolytic-dependency which can be exploited by lowering glucose availability to the tumor. The ketogenic diet (KD) is a low carbohydrate, high fat diet which decreases blood glucose and elevates blood ketones and has been shown to slow cancer progression in animals and humans. Abnormal tumor vasculature creates hypoxic pockets which promote cancer progression and further increase the glycolytic-dependency of cancers. Hyperbaric oxygen therapy (HBO2T) saturates tumors with oxygen, reversing the cancer promoting effects of tumor hypoxia. Since these non-toxic therapies exploit overlapping metabolic deficiencies of cancer, we tested their combined effects on cancer progression in a natural model of metastatic disease.

Methods

We used the firefly luciferase-tagged VM-M3 mouse model of metastatic cancer to compare tumor progression and survival in mice fed standard or KD ad libitum with or without HBO2T (2.5 ATM absolute, 90 min, 3x/week). Tumor growth was monitored by in vivo bioluminescent imaging.

Results

KD alone significantly decreased blood glucose, slowed tumor growth, and increased mean survival time by 56.7% in mice with systemic metastatic cancer. While HBO2T alone did not influence cancer progression, combining the KD with HBO2T elicited a significant decrease in blood glucose, tumor growth rate, and 77.9% increase in mean survival time compared to controls.

Conclusions

KD and HBO2T produce significant anti-cancer effects when combined in a natural model of systemic metastatic cancer. Our evidence suggests that these therapies should be further investigated as potential non-toxic treatments or adjuvant therapies to standard care for patients with systemic metastatic disease.  相似文献   

13.
Metastasic breast cancer is the leading cause of death by malignancy in women worldwide. Tumor metastasis is a multistep process encompassing local invasion of cancer cells at primary tumor site, intravasation into the blood vessel, survival in systemic circulation, and extravasation across the endothelium to metastasize at a secondary site. However, only a small percentage of circulating cancer cells initiate metastatic colonies. This fact, together with the inaccessibility and structural complexity of target tissues has hampered the study of the later steps in cancer metastasis. In addition, most data are derived from in vivo models where critical steps such as intravasation/extravasation of human cancer cells are mediated by murine endothelial cells. Here, we developed a new mouse model to study the molecular and cellular mechanisms underlying late steps of the metastatic cascade. We have shown that a network of functional human blood vessels can be formed by co-implantation of human endothelial cells and mesenchymal cells, embedded within a reconstituted basement membrane-like matrix and inoculated subcutaneously into immunodeficient mice. The ability of circulating cancer cells to colonize these human vascularized organoids was next assessed in an orthotopic model of human breast cancer by bioluminescent imaging, molecular techniques and immunohistological analysis. We demonstrate that disseminated human breast cancer cells efficiently colonize organoids containing a functional microvessel network composed of human endothelial cells, connected to the mouse circulatory system. Human breast cancer cells could be clearly detected at different stages of the metastatic process: initial arrest in the human microvasculature, extravasation, and growth into avascular micrometastases. This new mouse model may help us to map the extravasation process with unprecedented detail, opening the way for the identification of relevant targets for therapeutic intervention.  相似文献   

14.

Background

Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer.

Methodology/Principal Findings

We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8+ T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression.

Conclusions/Significance

Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.  相似文献   

15.
In vivo studies of the metastatic process are severely hampered by the fact that most human tumor cell lines derived from highly metastatic tumors fail to consistently metastasize in immunodeficient mice like nude mice. We describe a model system based on a highly immunodeficient double knockout mouse, Rag2?/?;Il2rg?/?, which lacks T, B and NK cell activity. In this model human metastatic HER-2? breast cancer cells displayed their full multiorgan metastatic potential, without the need for selections or additional manipulations of the system. Human HER-2? breast cancer cell lines MDA-MB-453 and BT-474 injected into Rag2?/?;Il2rg?/? mice faithfully reproduced human cancer dissemination, with multiple metastatic sites that included lungs, bones, brain, liver, ovaries, and others. Multiorgan metastatic spread was obtained both from local tumors, growing orthotopically or subcutaneously, and from cells injected intravenously. The problem of brain recurrencies is acutely felt in HER-2? breast cancer, because monoclonal antibodies against HER-2 penetrate poorly the blood-brain barrier. We studied whether a novel oral small molecule inhibitor of downstream PI3K, selected for its penetration of the blood-brain barrier, could affect multiorgan metastatic spread in Rag2?/?; Il2rg?/? mice. NVP-BKM120 effectively controlled metastatic growth in multiple organs, and resulted in a significant proportion of mice free from brain and bone metastases. Human HER-2? human breast cancer cells in Rag2?/?;Il2rg?/? mice faithfully reproduced the multiorgan metastatic pattern observed in patients, thus allowing the investigation of metastatic mechanisms and the preclinical study of novel antimetastatic agents.  相似文献   

16.
Exposure of skin to UV radiation (UVR) prior to allergen exposure can inhibit inflammatory airways disease in mice by reducing effector CD4+ T cells in both the trachea and the airway draining lymph nodes. This study analysed the immunomodulatory properties of UVR delivered to na?ve versus allergen pre-sensitised mice. In a model of inflammatory airways disease, BALB/c mice were sensitised by peritoneal injection of the allergen, ovalbumin (OVA) (20 μg/mouse), in the adjuvant, alum (4 mg/mouse), on days 0 and 14. On day 21, the mice were exposed to aerosolised OVA and 24 h later, proliferative responses by the cells in the airway draining lymph nodes were examined. UVR (8 kJ m(-2)) was administered 3 days prior to first OVA sensitisation (day -3), or OVA aerosol challenge (day 18). UVR before sensitisation reduced immune responses associated with expression of allergic airways disease; seven days after first OVA sensitisation, regulation of OVA-induced proliferation in vitro but not in vivo by CD4+CD25+ cells from UV-irradiated mice was detected. UVR administered to pre-sensitised mice regulated allergen responsiveness by cells from the airway draining lymph nodes only with a sensitisation protocol involving allergen and adjuvant at 5% strength of the original dose (1 μg OVA in 0.2 mg alum/mouse). These results suggest that UVR may modulate allergic airways disease by two mechanisms. The first, and more potent, is by reducing effector cells in respiratory tissues and requires UV delivery prior to sensitisation. The second, associated with administration to pre-sensitised mice, is weaker and is detected when the mice are sensitised with lower levels of allergen and adjuvant.  相似文献   

17.
Immunization of cancer patients is most effective in tumor-free conditions or in the presence of minimal residual disease. In the attempt to develop new strategies able to control tumor recurrence while allowing the development of protective immunity, we have investigated the immunogenic potential of two distinct vaccine formulations when provided alone or upon single and repeated treatment with chemotherapeutics drugs. Vaccine-induced T cell responses were first investigated by tracing Ag-specific T cell responses in mice bearing detectable frequencies of Ag-specific TCR transgenic CD4 and CD8 T cells. These studies indicated that immunization with peptide-pulsed dendritic cells and soluble Ag plus adjuvant elicited a comparable expansion and differentiation of CD4 and CD8 effector cells in the peripheral lymphoid tissues when provided alone or shortly after Doxorubicin or Melphalan administration. We also analyzed the potency of the combined vaccination in transgenic adenocarcinoma mouse prostate mice, which develop spontaneous prostate cancer. Dendritic cell-based vaccination elicited potent tumor-specific cytotoxic responses in mice bearing prostate intraepithelial neoplasia both in the absence and in the presence of Doxorubicin. Together our results indicate that Doxorubicin- or Melphalan-based chemotherapy and Ag-specific vaccination can be combined for adjuvant treatments of cancer patients.  相似文献   

18.
Cancer vaccines serve as a promising clinical immunotherapeutic strategy that help to trigger an effective and specific antitumor immune response compared to conventional therapies. However, poor immunogenicity of tumor cells remains a major obstacle for clinical application, and developing new methods to modify the immunogenicity of tumor cells may help to improve the clinical outcome of cancer vaccines. 4T1 mouse breast cancer cell line has been known as poorly immunogenic and highly metastatic cell line. Using this model, we identified a sub cell line of 4T1—designated as 4T1-Sapporo (4T1-S)—which shows immunogenic properties when used as a vaccine against the same line. In 4T1-S-vaccinated mice, subcutaneous injection of 4T1-S resulted in an antitumor inflammatory response represented by significant enlargement of draining lymph nodes, accompanied with increased frequencies of activated CD8 T cells and a subpopulation of myeloid cells. Additionally, 4T1-S vaccine was ineffective to induce tumor rejection in nude mice, which importantly indicate that 4T1-S vaccine rely on T cell response to induce tumor rejection. Further analysis to identify mechanisms that control tumor immunogenicity in this model may help to develop new methods for improving the efficacies of clinical cancer vaccines.  相似文献   

19.
Osteoactivin promotes breast cancer metastasis to bone   总被引:1,自引:0,他引:1  
The skeleton is a preferred site of metastasis in patients with disseminated breast cancer. We have used 4T1 mouse mammary carcinoma cells, which metastasize to bone from the mammary fat pads of immunocompetent mice, to identify novel genes involved in this process. In vivo selection of parental cells resulted in the isolation of independent, aggressively bone metastatic breast cancer populations with reduced metastasis to the lung. Gene expression profiling identified osteoactivin as a candidate that is highly and selectively expressed in aggressively bone metastatic breast cancer cells. These cells displayed enhanced migratory and invasive characteristics in vitro, the latter requiring sustained osteoactivin expression. Osteoactivin depletion in these cells, by small interfering RNA, also lead to a loss of matrix metalloproteinase-3 expression, whereas forced osteoactivin expression in parental 4T1 cells was sufficient to elevate matrix metalloproteinase-3 levels, suggesting that this matrix metalloproteinase may be an important mediator of osteoactivin function. Overexpression of osteoactivin in an independent, weakly bone metastatic breast cancer cell model significantly enhanced the formation of osteolytic bone metastases in vivo. Finally, high levels of osteoactivin expression in primary human breast cancers correlate with estrogen receptor-negative status and increasing tumor grade. Thus, we have identified osteoactivin as a protein that is expressed in aggressive human breast cancers and is capable of promoting breast cancer metastasis to bone.  相似文献   

20.
Studies in cancer patients have suggested that breast tumors recruit regulatory T cells (Tregs) into the tumor microenvironment. The extent to which local Tregs suppress antitumor immunity in breast cancer is unknown. We questioned whether inhibiting systemic Tregs with an IL-2 immunotoxin in a model of neu-mediated breast cancer, the neu-transgenic mouse, could impact disease progression and survival. As in human breast cancer, cancers that develop in these mice attract Tregs into the tumor microenvironment to levels of approximately 10-25% of the total CD4+ T cells. To examine the role of Tregs in blocking immune-mediated rejection of tumor, we depleted CD4+CD25+ T cells with an IL-2 immunotoxin. The treatment depleted Tregs without concomitant lymphopenia and markedly inhibited tumor growth. Depletion of Tregs resulted in a persistent antitumor response that was maintained over a month after the last treatment. The clinical response was immune-mediated because adoptive transfer of Tregs led to a complete abrogation of the therapeutic effects of immunotoxin treatment. Further, Treg down-modulation was accompanied by increased Ag-specific immunity against the neu protein, a self Ag. These results suggest that Tregs play a major role in preventing an effective endogenous immune response against breast cancer and that depletion of Tregs, without any additional immunotherapy, may mediate a significant antitumor response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号