首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is currently accepted that experimental acute infection by Trypanosoma cruzi promotes changes in secondary lymphoid organs, with general T and B lymphocyte polyclonal activation. Here we show that mesenteric lymph nodes (MLN) of acutely infected mice show severe atrophy due to extensive lymphocyte apoptosis. Accordingly, clusters of apoptotic cells are detected in the initial phase of infection in MLN but not in subcutaneous nodes. Moreover, such atrophy is independent of the infection route, parasite load or the mouse strain used. Studies in Fas-L deficient (BALB gld/gld+/+) and in TNF type 1 receptor (p55-/-) knockout mice indicate that both molecules are involved in MLN atrophy: Fas-L participates in cell death of CD4+ as well as B lymphocytes, whereas the TNF type 1 receptor is important for the apoptosis of CD4+ and CD8+ T lymphocytes. In contrast, perforin does not play a role, as lymph nodes from perforin-deficient mice do not behave differently from the corresponding wild types. Our data support the concept that, even in a systemic infection, differential (even opposing) responses can be found in different lymph node chains.  相似文献   

2.
In the acute phase of Trypanosoma cruzi infection, there is dramatic atrophy of the thymus. However, the pathways involved in this change have not yet been identified. This event is mainly characterized by a massive loss of cortical CD4+/CD8+ double-positive cells, but also by other structural and functional alterations in the organ. A number of molecules, including extracellular ATP, have been suggested to play a role in the selective processes that take place in the thymus. ATP and analogues trigger many different cellular responses in thymocytes and other cell types, such as the opening of plasma membrane cation channels and a pore that may induce cell death. Herein, we investigated the possible involvement of extracellular ATP in thymus atrophy induced by infection with T. cruzi. We observed that ATP induces an increase in plasma membrane permeabilization and cellular death in CD4+/CD8+ double-positive thymocytes collected from infected mice during the atrophy phase. No differences were observed prior to the atrophy phase or during the chronic phase. Our results indicate that P2Z/P2X7 receptors may play a central role in thymus atrophy during T. cruzi infection.  相似文献   

3.
In the present study we evaluated the mechanisms behind the implication of the costimulatory molecule CD28 for the immune response against the intracellular protozoan parasite Trypanosma cruzi. Our results reveal a critical role for CD28 in the activation of both CD4+ and CD8+ T cells and induction of the effector mechanisms that ultimately mediate the control of parasite growth and pathogenesis in infected mice. CD28-deficient (CD28-/-) mice are highly susceptible to T. cruzi infection, presenting higher parasitemia and tissue parasitism, but less inflammatory cell infiltrate in the heart than C57Bl/6 wild-type (WT) mice. All the infected WT mice survived acute infection, whereas 100% of CD28-/- mice succumbed to it. The increased susceptibility of the CD28-/- mice was associated with a dramatic decrease in the production of IFN-gamma by both CD4+ and CD8+ T cells resulting in a diminished capacity to produce nitric oxide (NO) and mediate parasite killing. T cell activation was also profoundly impaired in CD28-/- mice, which presented decreased lymphoproliferative response after the infection compared to WT mice. Together, these data represent the first evidence that CD28 is critical for efficient CD4+ T cell activation in response to T. cruzi infection in mice.  相似文献   

4.
The generation of knockout mice demonstrated that CD4(+), but not CD8(+), T cells were essential for the rejection of allografted skin or heart, presumably because these targets were CTL resistant. In the case of CTL-susceptible targets (e.g., P815 mastocytoma cells and EL-4 or RLmale1 T lymphoma cells), however, it is assumed that the CTL is the effector cell responsible for allograft rejection and that perforin and Fas ligand (FasL) pathways are the killing mechanisms. In the present study, we examined the role of these cytotoxic molecules in the rejection of i.p. allografted CTL-susceptible leukemia cells. Unexpectedly, the allografted leukemia cells were acutely rejected from gld (a mutation of FasL), perforin(-/-), or double-deficient mice. The peritoneal exudate cells from gld or normal mice showed T cell-, TCRalphabeta-, and perforin-dependent cytotoxic activity against the allograft, whereas the exudate cells from perforin(-/-) mice exhibited almost full cytotoxic activity in the presence of Fas-Fc. Furthermore, the infiltrates from double-deficient mice showed a high cytotoxic activity against the allografted cells even in the presence of anti-TCRalphabeta Ab or in the absence of T cells. The cytotoxic cells appeared to be macrophages, because they were Mac-1(+) mononuclear cells with a kidney- or horseshoe-shaped nucleus and because the cytotoxic activity was completely suppressed by the addition of N(G)-monomethyl-l-arginine, an inhibitor of inducible NO synthase. These results indicate that macrophages are ready and available to kill CTL-susceptible allografts when CTLs lack both perforin and FasL molecules.  相似文献   

5.
We investigated the thymic and peripheral T-lymphocyte subsets in BALB/c mice undergoing acute or chronic Trypanosoma cruzi infection, in terms of expression of particular Vbeta rearrangements of the T-cell receptor. We first confirmed the severe depletion of CD4(+)CD8(+) thymocytes following acute T. cruzi infection. By contrast, the numbers of CD4(+)CD8(+) cells in subcutaneous lymph nodes increased up to 16 times. In subcutaneous lymph nodes, we found CD4(+)CD8(+) cells that expressed prohibited segments TCRVbeta5 and TCRVbeta12 (which are physiologically deleted in the thymus of BALB/c mice), as did some mature single-positive cells (CD4(+)CD8(-) and CD4(-)CD8(+)). In the thymus of infected animals, although higher numbers of immature cells bearing such Vbeta segments were seen, they were no longer detected in the mature single-positive stage, suggesting that negative selection occurs normally. We also found increased numbers of cells bearing the potentially autoreactive phenotype TCRVbeta5(+) and TCRVbeta12(+) in T-lymphocyte subsets from subcutaneous lymph nodes of T. cruzi chronically infected mice. In conclusion, our data indicate that immature T lymphocytes bearing prohibited TCRVbeta segments leave the thymus and gain the lymph nodes, where they further differentiate into mature CD4(+) or CD8(+) cells. Conjointly, these findings show changes in the shaping of the central and peripheral T-cell repertoire in both acute and chronic phases of murine T. cruzi infection. The release of potentially autoreactive T cells in the periphery of the immune system may contribute to the autoimmune process found in both murine and human Chagas' disease.  相似文献   

6.
CD8+ T cells have been shown to be required for acute resistance to infection with the protozoan parasite, Trypanosoma cruzi, the causative agent of Chagas' disease. However, to date, the mechanism by which CD8+ T cells mediate protection in vivo has not been determined. While CD8+ T cells can exhibit cytolytic function, they also secrete cytokines such as IFN-gamma, which is known to mediate protection against T. cruzi infections. To determine whether cytolysis is an important effector function in vivo, we have compared outcomes of T. cruzi infection in normal and perforin-deficient mice. Our results indicate that while perforin-dependent cytolytic mechanisms clearly make a major contribution to acute resistance to T. cruzi infection, this contribution may be strain and challenge dose-dependent, since perforin-deficient mice challenged with lower doses of a less virulent strain survived and were subsequently resistant to challenge with virulent organisms. In vivo depletion studies demonstrated that survival of perforin-deficient mice challenged with low doses of T. cruzi requires both CD4+ and CD8+ T cells and is dependent on IFN-gamma secretion. These studies document the participation of both perforin-dependent cytotoxic and perforin-independent, IFN-gamma-dependent immune mechanisms in acute resistance to T. cruzi infection.  相似文献   

7.
8.
Extrathymic CD4+CD8+ double-positive (DP) T cells are increased in some pathophysiological conditions, including infectious diseases. In the murine model of Chagas disease, it has been shown that the protozoan parasite Trypanosoma cruzi is able to target the thymus and induce alterations of the thymic microenvironment and the lymphoid compartment. In the acute phase, this results in a severe atrophy of the organ and early release of DP cells into the periphery. To date, the effect of the changes promoted by the parasite infection on thymic central tolerance has remained elusive. Herein we show that the intrathymic key elements that are necessary to promote the negative selection of thymocytes undergoing maturation during the thymopoiesis remains functional during the acute chagasic thymic atrophy. Intrathymic expression of the autoimmune regulator factor (Aire) and tissue-restricted antigen (TRA) genes is normal. In addition, the expression of the proapoptotic Bim protein in thymocytes was not changed, revealing that the parasite infection-induced thymus atrophy has no effect on these marker genes necessary to promote clonal deletion of T cells. In a chicken egg ovalbumin (OVA)-specific T-cell receptor (TCR) transgenic system, the administration of OVA peptide into infected mice with thymic atrophy promoted OVA-specific thymocyte apoptosis, further indicating normal negative selection process during the infection. Yet, although the intrathymic checkpoints necessary for thymic negative selection are present in the acute phase of Chagas disease, we found that the DP cells released into the periphery acquire an activated phenotype similar to what is described for activated effector or memory single-positive T cells. Most interestingly, we also demonstrate that increased percentages of peripheral blood subset of DP cells exhibiting an activated HLA-DR+ phenotype are associated with severe cardiac forms of human chronic Chagas disease. These cells may contribute to the immunopathological events seen in the Chagas disease.  相似文献   

9.
Using the patch clamp whole-cell recording technique, we studied expression of K+ channels in mAb-defined T cell subsets from diseased C3H-lpr/lpr and C3H-gld/gld mice and from healthy C3H-HeJ congenic controls. Both mutant mouse strains develop a lupus-like syndrome accompanied by hyperplasia of a functionally and phenotypically abnormal T cell subset. These defective cells, which are Thy-1.2+ CD4- CD8- B220+ F23.1+, display an abundance of type l K+ channels. Phenotypically similar lymph node T cells from normal C3H-HeJ mice, or young C3H-lpr/lpr mice before the onset of disease, do not display large numbers of type l K+ channels. CD4+ CD8- T cells (helper/inducer) from the mutant mice express a small number of type n K+ channels, and CD4- CD8+ T cells (suppressor/cytotoxic) show a low level of type l or n' K+ channels, as do their phenotypically equivalent counterparts in the normal mouse thymus. These results suggest that the abundant expression of type l K+ channels is a marker for the defective lpr and gld T cell subset and may reflect the "abnormal" proliferative status of these cells.  相似文献   

10.
Previous studies revealed a significant production of inflammatory cytokines together with severe thymic atrophy and thymocyte migratory disturbances during experimental Chagas disease. Migratory activity of thymocytes and mature T cells seem to be finely tuned by cytokines, chemokines and extracellular matrix (ECM) components. Systemic TNF-α is enhanced during infection and appears to be crucial in the response against the parasite. However, it also seems to be involved in disease pathology, since it is implicated in the arrival of T cells to effector sites, including the myocardium. Herein, we analyzed the role of TNF-α in the migratory activity of thymocytes in Trypanosoma cruzi (T. cruzi) acutely-infected mice. We found increased expression and deposition of TNF-α in the thymus of infected animals compared to controls, accompanied by increased co-localization of fibronectin, a cell migration-related ECM molecule, whose contents in the thymus of infected mice is also augmented. In-vivo studies showed an enhanced export of thymocytes in T. cruzi-infected mice, as ascertained by intrathymic injection of FITC alone or in combination with TNF-α. The increase of immature CD4(+)CD8(+) T cells in secondary lymphoid organs was even more clear-cut when TNF-α was co-injected with FITC. Ex-vivo transmigration assays also revealed higher number of migrating cells when TNF-α was added onto fibronectin lattices, with higher input of all thymocyte subsets, including immature CD4(+)CD8(+). Infected animals also exhibit enhanced levels of expression of both mRNA TNF-α receptors in the CD4(+)CD8(+) subpopulation. Our findings suggest that in T. cruzi acute infection, when TNF-α is complexed with fibronectin, it favours the altered migration of thymocytes, promoting the release of mature and immature T cells to different compartments of the immune system. Conceptually, this work reinforces the notion that thymocyte migration is a multivectorial biological event in health and disease, and that TNF-α is a further player in the process.  相似文献   

11.
Infection with the protozoan parasite Trypanosoma cruzi is a major cause of morbidity and mortality in Central and South America. Control of acute experimental infection with T. cruzi is dependent on a robust T cell and type 1 cytokine response. However, little evidence exists demonstrating the development and persistence of a potent antiparasite T cell memory response, and there has been much speculation that the majority of the immune response to T. cruzi infection is not directed against the parasite. In this study, we used an experimental mouse model of T. cruzi infection to test both the Ag specificity and the functional and phenotypic characteristics of the responding T cell population. We observed a vigorous antiparasite response from both CD4(+) and CD8(+) T cells that was maintained in the face of persistent infection. T cells from infected mice also proliferated in response to re-exposure to Ag, and CD8(+) T cells underwent spontaneous proliferation when transferred to naive congenic mice, both characteristic of central memory T cells. Interestingly, T cells from infected mice showed significant down-regulation of CD62L, a characteristic associated with an effector memory phenotype. These results suggest that T cells maintained in mice with chronic T. cruzi infection are fully functional memory cells that cannot be easily categorized in the current central/effector memory paradigm.  相似文献   

12.
Host resistance to the intracellular protozoan parasite Trypanosoma cruzi depends on IFN-gamma production by T cells and NK cells. However, the involvement of innate immunity in host resistance to T. cruzi remains unclear. In the present study, we investigated host defense against T. cruzi by focusing on innate immunity. Macrophages and dendritic cells (DCs) from MyD88(-/-)TRIF(-/-) mice, in which TLR-dependent activation of innate immunity was abolished, were defective in the clearance of T. cruzi and showed impaired induction of IFN-beta during T. cruzi infection. Neutralization of IFN-beta in MyD88(-/-) macrophages led to enhanced T. cruzi growth. Cells from MyD88(-/-)IFNAR1(-/-) mice also showed impaired T. cruzi clearance. Furthermore, both MyD88(-/-)TRIF(-/-) and MyD88(-/-)IFNAR1(-/-) mice were highly susceptible to in vivo T. cruzi infection, highlighting the involvement of innate immune responses in T. cruzi infection. We further analyzed the molecular mechanisms for the IFN-beta-mediated antitrypanosomal innate immune responses. MyD88(-/-)TRIF(-/-) and MyD88(-/-)IFNAR1(-/-) macrophages and DCs exhibited defective induction of the GTPase IFN-inducible p47 (IRG47) after T. cruzi infection. RNA interference-mediated reduction of IRG47 expression in MyD88(-/-) macrophages resulted in increased intracellular growth of T. cruzi. These findings suggest that TLR-dependent expression of IFN-beta is involved in resistance to T. cruzi infection through the induction of IRG47.  相似文献   

13.
Interference or competition between CD8(+) T cells restricted by distinct MHC-I molecules can be a powerful means to establish an immunodominant response. However, its importance during infections is still questionable. In this study, we describe that following infection of mice with the human pathogen Trypanosoma cruzi, an immunodominant CD8(+) T cell immune response is developed directed to an H-2K(b)-restricted epitope expressed by members of the trans-sialidase family of surface proteins. To determine whether this immunodominance was exerted over other non-H-2K(b)-restricted epitopes, we measured during infection of heterozygote mice, immune responses to three distinct epitopes, all expressed by members of the trans-sialidase family, recognized by H-2K(b)-, H-2K(k)-, or H-2K(d)-restricted CD8(+) T cells. Infected heterozygote or homozygote mice displayed comparably strong immune responses to the H-2K(b)-restricted immunodominant epitope. In contrast, H-2K(k)- or H-2K(d)-restricted immune responses were significantly impaired in heterozygote infected mice when compared with homozygote ones. This interference was not dependent on the dose of parasite or the timing of infection. Also, it was not seen in heterozygote mice immunized with recombinant adenoviruses expressing T. cruzi Ags. Finally, we observed that the immunodominance was circumvented by concomitant infection with two T. cruzi strains containing distinct immunodominant epitopes, suggesting that the operating mechanism most likely involves competition of T cells for limiting APCs. This type of interference never described during infection with a human parasite may represent a sophisticated strategy to restrict priming of CD8(+) T cells of distinct specificities, avoiding complete pathogen elimination by host effector cells, and thus favoring host parasitism.  相似文献   

14.
CD8(+) cytotoxic T lymphocyte (CTL) response is critical for controlling the infection of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Since only a few CD8 antigens have been described in Chagas disease patients, the identification of new class I-restricted epitopes is urgently needed for the development of immunotherapies against T. cruzi infection. In this study, bioinformatic methods were used to predict HLA-A?02:01-binders, and 30 peptides were selected, synthesized and tested for HLA-A?02:01 binding. Among them, sixteen peptides with medium-to-high affinity were assayed for their recognition by CTL from HSP70-immunized or T. cruzi-infected transgenic B6-A2/K(b) mice. Our results show that four immunodominant epitopes (HSP70(210-8), HSP70(255-63), HSP70(316-24) and HSP70(345-53)) are contained in the T. cruzi HSP70 antigen. Indeed two of them (HSP70(210-8) and HSP70(316-24)) were also recognized by CTL of HLA-A?02:01(+) Chagas disease patients, indicating that these peptides are processed and displayed as MHC class I epitopes during the natural history of T. cruzi infection. The HLA-A?02:01 restriction was evidenced using peptide-pulsed K562-A2 cells as antigen-presenting cells. Both cytotoxic and cytokine-secreting activities were detected in response to the former two peptides and, moreover, 10/12 patients (83%) recognized at least one of these two HSP70-derived CD8(+) epitopes.  相似文献   

15.
In Chagas disease, understanding how the immune response controls parasite growth but also leads to heart damage may provide insight into the design of new therapeutic strategies. Tumor necrosis factor-alpha (TNF-alpha) is important for resistance to acute Trypanosoma cruzi infection; however, in patients suffering from chronic T. cruzi infection, plasma TNF-alpha levels correlate with cardiomyopathy. Recent data suggest that CD8-enriched chagasic myocarditis formation involves CCR1/CCR5-mediated cell migration. Herein, the contribution of TNF-alpha, especially signaling through the receptor TNFR1/p55, to the pathophysiology of T. cruzi infection was evaluated with a focus on the development of myocarditis and heart dysfunction. Colombian strain-infected C57BL/6 mice had increased frequencies of TNFR1/p55+ and TNF-alpha+ splenocytes. Although TNFR1-/- mice exhibited reduced myocarditis in the absence of parasite burden, they succumbed to acute infection. Similar to C57BL/6 mice, Benznidazole-treated TNFR1-/- mice survived acute infection. In TNFR1-/- mice, reduced CD8-enriched myocarditis was associated with defective activation of CD44+CD62Llow/- and CCR5+ CD8+ lymphocytes. Also, anti-TNF-alpha treatment reduced the frequency of CD8+CCR5+ circulating cells and myocarditis, though parasite load was unaltered in infected C3H/HeJ mice. TNFR1-/- and anti-TNF-alpha-treated infected mice showed regular expression of connexin-43 and reduced fibronectin deposition, respectively. Furthermore, anti-TNF-alpha treatment resulted in lower levels of CK-MB, a cardiomyocyte lesion marker. Our results suggest that TNF/TNFR1 signaling promotes CD8-enriched myocarditis formation and heart tissue damage, implicating the TNF/TNFR1 signaling pathway as a potential therapeutic target for control of T. cruzi-elicited cardiomyopathy.  相似文献   

16.
Trypanosoma cruzi is a protozoan parasite that infects vertebrates, causing in humans a pathological condition known as Chagas' disease. The infection of host cells by T. cruzi involves a vast collection of molecules, including a family of 85 kDa GPI-anchored glycoproteins belonging to the gp85/trans-sialidase superfamily, which contains a conserved cell-binding sequence (VTVXNVFLYNR) known as FLY, for short. Herein, it is shown that BALB/c mice administered with a single dose (1 μg/animal, intraperitoneally) of FLY-synthetic peptide are more susceptible to infection by T. cruzi, with increased systemic parasitaemia (2-fold) and mortality. Higher tissue parasitism was observed in bladder (7·6-fold), heart (3-fold) and small intestine (3·6-fold). Moreover, an intense inflammatory response and increment of CD4+ T cells (1·7-fold) were detected in the heart of FLY-primed and infected animals, with a 5-fold relative increase of CD4+CD25+FoxP3+ T (Treg) cells. Mice treated with anti-CD25 antibodies prior to infection, showed a decrease in parasitaemia in the FLY model employed. In conclusion, the results suggest that FLY facilitates in vivo infection by T. cruzi and concurs with other factors to improve parasite survival to such an extent that might influence the progression of pathology in Chagas' disease.  相似文献   

17.
Shrestha B  Diamond MS 《Journal of virology》2007,81(21):11749-11757
West Nile virus (WNV) is a neurotropic flavivirus that causes encephalitis, most frequently in elderly and immunocompromised humans. Previous studies demonstrated that CD8+ T cells utilize perforin-dependent cytolytic mechanisms to limit WNV infection. Nonetheless, the phenotype of perforin-deficient CD8+ T cells was not as severe as that of an absence of CD8+ T cells, suggesting additional effector control mechanisms. In this study, we evaluated the contribution of Fas-Fas ligand (FasL) interactions to CD8+ T-cell-mediated control of WNV infection. Notably, the cell death receptor Fas was strongly upregulated on neurons in culture and in vivo after WNV infection. gld mice that were functionally deficient in FasL expression showed increased susceptibility to lethal WNV infection. Although antigen-specific priming of CD8+ T cells in peripheral lymphoid tissues was normal in gld mice, increased central nervous system (CNS) viral burdens and delayed clearance were observed. Moreover, the adoptive transfer of WNV-primed wild-type but not gld CD8+ T cells to recipient CD8(-/-) or gld mice efficiently limited infection in the CNS and enhanced survival rates. Overall, our data suggest that CD8+ T cells also utilize FasL effector mechanisms to contain WNV infection in Fas-expressing neurons in the CNS.  相似文献   

18.
Infection with Chlamydia pneumoniae is a common cause of acute respiratory disease in man and is also associated with atherosclerotic cardiovascular disorder. Herein, we have compared bacterial load and immune parameters of C. pneumoniae-infected mice genomically lacking T cell coreceptors, cytokine receptors, or cytotoxic effector molecules. A protective role for CD8+ cells is shown by the enhanced severity of infection of CD8-/- or TAP-1-/-/beta2-microglobulin -/- mice. CD8+ cells hindered a parasite growth-promoting role of CD4+ T cells, as indicated by the higher sensitivity to early infection of CD8-/- than CD4-/-/CD8-/- mice, which was further confirmed in experiments in which SCID mice were reconstituted with either CD4+ or CD4+ plus CD8+ T cells. Interestingly, CD4+ T cells played a dual role, detrimental early (14 and 24 days) after infection but protective at later time points (60 days after infection). The CD8+ T cell protection was perforin independent. The early deleterious role of CD4+ in the absence of CD8+ T cells was associated with enhanced IL-4 and IL-10 mRNA levels and delayed IFN-gamma mRNA accumulation in lungs. In line with this, IFN-gammaR-/- (but not TNFRp55 -/-) mice showed dramatically increased susceptibility to C. pneumoniae, linked to reduced inducible nitric oxide synthase (iNOS) mRNA accumulation, but not to diminished levels of specific Abs. The increased susceptibility of iNOS-/- mice indicates a protective role for iNOS activity during infection with C. pneumoniae. The higher sensitivity of IFN-gammaR-/- mice to C. pneumoniae compared with that of SCID or recombination-activating gene-1-/- mice suggested a relevant protective role of IFN-gamma-dependent innate mechanisms of protection.  相似文献   

19.
Chagas' disease is a zoonosis prevalent in Latin America that is caused by the protozoan Trypanosoma cruzi. The immunopathogenesis of cardiomyopathy, the main clinical problem in Chagas' disease, has been extensively studied but is still poorly understood. In this study, we systematically compared clinical, microbiologic, pathologic, immunologic, and molecular parameters in two mouse models with opposite susceptibility to acute myocarditis caused by the myotropic Colombiana strain of T. cruzi: C3H/HeSnJ (100% mortality, uncontrolled parasitism) and C57BL/6J (<10% mortality, controlled parasitism). T. cruzi induced differential polarization of immunoregulatory cytokine mRNA expression in the hearts of C57BL/6J versus C3H/HeSnJ mice; however, most differences were small. The difference in IL-10 expression was exceptional (C57BL/6J 8.7-fold greater than C3H/HeSnJ). Consistent with this, hearts from infected C57BL/6J mice, but not C3H/HeSnJ mice, had a high frequency of total IL-10-producing CD8(+) T cells and both CD4(+) and CD8(+) subsets of IFN-γ(+)IL-10(+) double-producing T cells. Furthermore, T. cruzi infection of IL-10(-/-) C57BL/6J mice phenocopied fatal infection in wild-type C3H/HeSnJ mice with complete loss of parasite control. Adoptive transfer experiments indicated that T cells were a source of protective IL-10. Thus, in this system, IL-10 production by T cells promotes T. cruzi control and protection from fatal acute myocarditis.  相似文献   

20.
Mouse hepatitis virus A59 (MHV-A59) infection of adult BALB/c mice induced a severe, transient atrophy of the thymus. The effect was maximal at 1 week after infection, and thymuses returned to normal size by 2 weeks after infection. There was no effect of glucocorticoids, since thymus atrophy was also found in adrenalectomized, infected mice. In infected thymus, immature CD4+ CD8+ lymphocytes were selectively depleted, and apoptosis of lymphocytes was increased. The MHV receptor glycoprotein MHVR was detected on thymus epithelial cells but not on T lymphocytes. In a small number of stromal epithelial cells, but in very few lymphocytes, the viral genome was detectable by in situ hybridization. These observations suggested that MHV-A59-induced thymic atrophy results not from a generalized lytic infection of T lymphocytes but rather from apoptosis of immature double-positive T cells that might be caused by infection of a small proportion of thymus epithelial cells or from inappropriate secretion of some factor, such as a cytokine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号