首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laccase–mediator systems have the disadvantage that the mediator is expensive and potentially toxic. In this work, we used N-hydroxyacetanilide (NHA) in combination with laccase for the first time to bleach eucalypt pulp and found it to be a very promising, advantageous alternative to 1-hydroxybenzotriazole (HBT) as mediator. Thus, NHA is efficiently oxidized by laccase to a radical that absorbs light at 350 nm. Also, NHA is a better substrate for laccase than is HBT. An innovative result is that the enzyme is inactivated to a similar extent by both mediators under the typical treatment conditions of the bleaching step (L). This adverse effect, however, is strongly reduced in the presence of pulp. Moreover, the laccase–NHA system is as efficient as the laccase–HBT system in reducing the kappa number of eucalyptus pulp. Using a xylanase pretreatment or unbleached pulp boosts kappa number reduction and bleaching with the laccase–mediator system. Based on the results of cyclic voltammetry tests, NHA has a slightly lower redox potential than HBT, which further supports use of the former; also, unlike HBT, NHA is oxidized in a reversible, pH-dependent manner. Interestingly, the laccase–NHA system provides more efficient bleaching of eucalyptus pulp at pH 5 than it does at pH 4.  相似文献   

2.
Fungal laccases in the presence of mediators are powerful biocatalysts to degrade lignin. Pycnoporus cinnabarinus laccase and 1-hydroxybenzotriazole (HBT) have been successfully used to delignify eucalypt kraft pulp once integrated in a totally chlorine-free bleaching sequence. Real time delignification of kraft pulp by laccase–HBT was verified in situ by monitoring the loss of lignin autofluorescence during the enzymatic treatment using confocal laser scanning microscopy. The highest delignification of pulp fibers occurred over a very short time-span (5 min). Moreover, we demonstrate the removal of sterols, responsible for pitch deposits in hardwood kraft pulps, as an additional effect of laccase-HBT. Spherical structures between pulp fibers localized by low temperature scanning electron microscopy were removed by laccase–HBT. The use of filipin, a specific stain, revealed the sterol nature of many of these structures. At the end of the enzyme-aided bleaching sequence, the fluorescent sterols–filipin signals were almost completely absent.  相似文献   

3.
In this work, the effect of Trametes pubescens laccase (TpL) used in combination with a low-molecular-weight ultra-filtered lignin (UFL) to improve mechanical properties of kraft liner pulp and chemi-thermo-mechanical pulp was studied. UFL was isolated by ultra-filtration from the kraft cooking black liquor obtained from softwood pulping. This by-product from the pulp industry contains an oligomeric lignin with almost twice the amount of free phenolic moieties than residual kraft pulp lignin. The reactivity of TpL on UFL and kraft pulp was studied by nuclear magnetic resonance spectroscopy and size exclusion chromatography. Laccase was shown to polymerise UFL and residual kraft pulp lignin in the fibres, seen by the increase in their average molecular weight and in the case of UFL as a decrease in the amount of phenolic hydroxyls. The laccase initiated cross-linking of lignin, mediated by UFL, which gives rise to more than a twofold increase in wet strength of kraft liner pulp handsheets without loosing other critical mechanical properties. Hence, this could be an interesting path to decrease mechano-sorptive creep that has been reported to lessen in extent as wet strength is given to papers. The laccase/2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) mediator system showed a greater increase in wet tensile strength of the resulting pulp sheets than the laccase/UFL system. However, other mechanical properties such as dry tensile strength, compression strength and Scott Bond internal strength were negatively affected by the laccase/ABTS system.  相似文献   

4.
Summary Bleaching of hardwood kraft pulp by Trametes versicolor was accompanied by release and accumulation of methanol, which was produced by demethylation of the pulp. A partial demethylation of the pulp was observed with isolated laccase I from T. versicolor. The extent of demethylation by laccase was increased to the level released by the fungus by addition of 2,2-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS). Methanol release by the laccase/ABTS combination was followed by slower kappa reduction. Both methanol release and kappa reduction were dependent on laccase and ABTS concentrations. The fungus did not produce a stable equivalent of ABTS during bleaching, because extracellular culture fluid from bleaching cultures gave only the same methanol release from pulp as laccase I. Pulp viscosity, an indicator of cellulose chain length, was decreased only slightly by laccase. Thus the enzyme in the presence of ABTS, unlike the fungus, specifically attacks lignin.Offprint requests to: R. Bourbonnais  相似文献   

5.
Biobleaching of kraft pulp is a possible application of laccase, but it has not been described in detail for complete industrial bleaching sequences yet. Therefore, in this work, the biobleaching of Eucalyptus globulus kraft pulp was performed using a modified industrial totally chlorine‐free sequence. The modification consisted in the substitution of an enzymatic delignification stage, based on the application of laccase from Trametes villosa, for the first alkaline extraction one. The enzymatic stage was performed with several synthetic and natural mediators, namely 1‐hydroxybenzotriazole (HBT), violuric acid (VA), methyl syringate, and syringaldehyde. Several pulp properties were analyzed after each stage of the bleaching process—kappa number, ISO brightness, viscosity, and optical properties of CIEL*a*b* system. The new biobleaching sequence improved the pulp properties, in comparison to the conventional bleaching sequence, if HBT or VA was used as mediators. VA was selected as the best mediator of those tested and the effect of its concentration in the enzymatic stage was subsequently studied. Reducing the initial concentration by 30%, the same pulp quality was obtained, but if the reduction attained 60%, an important decrease in pulp integrity was detected. The modified bleaching sequence could improve the bleached pulp properties (kappa number 10%, ISO brightness 1%, and viscosity 5%) in comparison to the mill sequence. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

6.
An environmentally sound biobleaching to get high quality paper pulp from mixed wood pulp was attempted employing laccase from Aspergillus fumigatus VkJ2.4.5 for lignin removal. Laccase treatment was performed in the presence of a mediator N-hydroxybenzotriazole (HBT, 1.5% w/w), resulting into notably higher level of delignification of the pulp. Enzyme at 10 Ug−1 of pulp at 50°C, pH 6.0, for 2 h with a pulp consistency of 10% was found suitable for enabling maximum decrease in the kappa number. The kappa number and yellowness decreased by 14 and 4% whereas ISO brightness improved by 7%. The presence of a characteristic peak at 280 nm indicated the presence of lignin in the effluent during biobleaching. Analysis of FTIR spectra of residual lignin revealed characteristic modifications following enzymatic bleaching by laccase mediator system (LMS). Variations in morphology and crystallinity of pulp were evaluated by scanning electron microscopy and X-ray diffraction analysis.  相似文献   

7.
In this work the effects of individual purified cellulases of Trichoderma reesei were studied in the enzyme-aided bleaching of kraft pulps. The cellobiohydrolases I and II, when used alone, had no positive effect on the bleachability of kraft pulps. The endoglucanase I (EG I), however, acted on pulp similarly to xylanases and with an enzyme dosage of 0.1 mg/g a clear increase in pulp brightness could be observed. Due to the unspecificity of this enzyme, the viscosity of the pulp was simultaneously decreased. Of the cellulases, EG II was clearly most detrimental in reducing the pulp viscosity. Hence, the action of purified cellulases of T. reesei on pulp as a substrate differs profoundly, and all cellulases are not detrimental to the pulp properties. Correspondence to: J. Buchert  相似文献   

8.
The ability of 10 dikaryotic and 20 monokaryotic strains of Trametes (Coriolus) versicolor to bleach and delignify hardwood and softwood kraft pulps was assessed. A dikaryon (52P) and two of its mating-compatible monokaryons (52J and 52D) derived via protoplasting were compared. All three regularly bleached hardwood kraft pulp more than 20 brightness points (International Standards Organization) in 5 days and softwood kraft pulp the same amount in 12 days. Delignification (kappa number reduction) by the dikaryon and the monokaryons was similar, but the growth of the monokaryons was slower. Insoluble dark pigments were commonly found in the mycelium, medium, and pulp of the dikaryon only. Laccase and manganese peroxidase (MnP) but not lignin peroxidase activities were secreted during bleaching by all three strains. Their laccase and MnP isozyme patterns were compared on native gels. No segregation of isozyme bands between the monokaryons was found. Hardwood kraft pulp appeared to adsorb several laccase isozyme bands. One MnP isozyme (pI, 3.2) was secreted in the presence of pulp by all three strains, but a second (pI, 4.9) was produced only by 52P. A lower level of soluble MnP activity in one monokaryon (52D) was associated with reduced bleaching ability and a lower level of methanol production. Since monokaryon 52J bleached pulp better than its parent dikaryon 52P, especially per unit of biomass, this genetically simpler monokaryon will be the preferred subject for further genetic manipulation and improvement of fungal pulp biological bleaching.  相似文献   

9.
Laccase-catalyzed oxygen delignification of kraft pulp offers some potential as a replacement for conventional chemical bleaching and has the advantage of requiring much lower pressure and temperature. However, chemical mediators are required for effective delignification by laccase, and their price is currently too high at the dosages required. To date, most studies have employed laccase from Trametes versicolor. We have found significant differences in reactivity between laccases from different fungi when they are tested for pulp delignification in the presence of the mediators 2,2(prm1)-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) and 1-hydroxybenzotriazole (HBT). A more detailed study of T. versicolor laccase with ABTS and HBT showed that HBT gave the most extensive delignification over 2 h but deactivated the enzyme, and therefore a higher enzyme dosage was required. Other mediators, including 1-nitroso-2-naphthol-3,6-disulfonic acid, 4-hydroxy-3-nitroso-1-naphthalenesulfonic acid, promazine, chlorpromazine, and Remazol brilliant blue, were also tested for their ability to delignify kraft pulp. Studies with dimeric model compounds indicated that the mechanisms of oxidation by ABTS and HBT are different. In addition, oxygen uptake by laccase is much slower with HBT than with ABTS. It is proposed that the dication of ABTS and the 1-oxide radical of HBT, with redox potentials in the 0.8- to 0.9-V range, are required for pulp delignification.  相似文献   

10.
Cellulase-free xylan-degrading enzyme preparations from Acrophialophora nainiana, Humicola grisea var. thermoidea and two Trichoderma harzianum strains were used as bleaching agents for Eucalyptus kraft pulp, prior to a chlorine dioxide and alkaline bleaching sequence. In comparison to the control sequence (performed without xylanase pretreatment), the sequence incorporating enzyme treatment was more effective. Removal of residual lignin was indicated by a reduction in kappa number. Overall, enzyme preparations from T. harzianum were marginally more effective in reducing pulp viscosity and chlorine chemical consumption and improving the brightness of the kraft pulp. However, the highest reduction in pulp viscosity was mediated by the xylanase preparation from A. nainiana. Xylanase pretreatment compares very favorably with that of chemical pulping. Journal of Industrial Microbiology & Biotechnology (2002) 28, 204–206 DOI: 10.1038/sj/jim/7000227 Received 27 April 2001/ Accepted in revised form 03 November 2001  相似文献   

11.
New polyoxometalate–laccase integrated system (PLIDS) employing polyoxometalate [SiW11VVO40]5− and laccase of Trametes versicolor for the continuous delignification of eucalypt kraft pulp has been developed. Pulp was delignified in a batch reactor containing catalytic amounts of [SiW11VVO40]5− at about 90 °C under atmospheric pressure. Re-oxidation of reduced polyoxometalate (POM) with laccase was carried out at 45 °C in a separate aerated bioreactor coupled with an ultrafiltration tubular ceramic membrane. This allowed the separation of laccase from re-oxidized POM, which was supplied in turn continuously to the delignification reactor.Proposed PLIDS allowed sustainable pulp delignification with minimal degradation of polysaccharides. The implementation of PLIDS, instead the fist chlorine dioxide stage (D) in conventional DEDED bleaching sequence, showed almost 60% of chlorine dioxide savings with strength properties of the bleached pulp (90% ISO) similar to those obtained after the conventional bleaching.  相似文献   

12.
Enzyme-aided bleaching of softwood and hardwood kraft pulps by glycosyl hydrolase family-10 and -11 xylanases and a family-26 mannanase was investigated. The ability to release reducing sugar from pulp xylan and to enhance bleachability is not a characteristic shared by all xylanases. Of the six enzymes tested, two xylanases belonging to family 11 were most effective at increasing bleachability and improving final paper brightness. None of the enzymes had a deleterious effect on pulp fibre integrity. The efficiency of individual xylanases as bleach enhancers was not dependent on the source microorganism, and could not be predicted solely on the basis of the quantity or nature of products released from pulp xylan. Cooperative interactions between xylanase/xylanase and xylanase/mannanase combinations, during the pretreatment of softwood and hardwood pulps, were investigated. Synergistic effects on reducing-sugar release and kappa number reduction were elicited by a combination of two family-10 xylanases. Pretreatment of kraft pulp with mannanase A from Pseudomonas fluorescens subsp. cellulosa and any one of a number of xylanases resulted in increased release of reducing sugar and a larger reduction in kappa number than obtained with the xylanases alone, confirming the beneficial effects of family-26 mannanases on enzyme-aided bleaching of paper pulp. Received: 6 January 1997 / Received revision: 10 April 1997 / Accepted: 19 April 1997  相似文献   

13.
Previous work has shown that Trametes (Coriolus) versicolor bleaches kraft pulp brownstock with the concomitant release of methanol. In this work, the fungus is shown to produce both laccase and manganese peroxidase (MnP) but not lignin peroxidase during pulp bleaching. MnP production was enhanced by the presence of pulp and/or Mn(II) ions. The maximum level of secreted MnP was coincident with the maximum rate of fungal bleaching. Culture filtrates isolated from bleaching cultures produced Mn(II)- and hydrogen peroxide-dependent pulp demethylation and delignification. Laccase and MnP were separated by ion-exchange chromatography. Purified MnP alone produced most of the demethylation and delignification exhibited by the culture filtrates. On the basis of the methanol released and the total and phenolic methoxyl contents of the pulp, it appears that MnP shows a preference for the oxidation of phenolic lignin substructures. The extensive increase in brightness observed in the fungus-treated pulp was not found with MnP alone. Therefore, either the MnP effect must be optimized or other enzymes or compounds from the fungus are also required for brightening.  相似文献   

14.
Fungal laccases in the presence of mediators are powerful biocatalysts to degrade lignin. Pycnoporus cinnabarinus laccase and 1-hydroxybenzotriazole (HBT) have been successfully used to delignify eucalypt kraft pulp once integrated in a totally chlorine-free bleaching sequence. Real time delignification of kraft pulp by laccase-HBT was verified in situ by monitoring the loss of lignin autofluorescence during the enzymatic treatment using confocal laser scanning microscopy. The highest delignification of pulp fibers occurred over a very short time-span (5 min). Moreover, we demonstrate the removal of sterols, responsible for pitch deposits in hardwood kraft pulps, as an additional effect of laccase-HBT. Spherical structures between pulp fibers localized by low temperature scanning electron microscopy were removed by laccase-HBT. The use of filipin, a specific stain, revealed the sterol nature of many of these structures. At the end of the enzyme-aided bleaching sequence, the fluorescent sterols-filipin signals were almost completely absent.  相似文献   

15.
《Process Biochemistry》2010,45(3):425-430
The variation of the contents in hexenuronic acids (HexA) and lignin in Eucalyptus kraft pulp during sequences with the laccase–mediator treatment with or without xylanase pretreatment was studied. The laccase–HBT system (HBT: 1-hydroxybenzotriazole) initially oxidized lignin alone but altered cellulose in the pulp as well after some time. Once all accessible lignin was removed, the system acted on HexA. As a result, the laccase–mediator treatment reduced the HexA content of the pulp, especially if a xylanase pretreatment was applied before. A previously unseen effect was observed here: HexA removal was found to depend on the laccase and HBT doses, but not on the reaction time. In addition, the xylanase pretreatment was found to strongly boost the effects of the laccase–HBT system by facilitating their access to HexA without affecting the lignin content.  相似文献   

16.
Xylanase produced from the newly isolated Penicillium crustosum FP 11 and its potential in the prebleaching of kraft pulp were evaluated using a statistical approach. A Plackett–Burman design (PBD) was carried out to select the significant variables of the medium, these being NaNO3, KH2PO4, MgSO4, KCl, Fe2(SO4)3, yeast extract, corn stover, and initial pH, in a liquid culture under static conditions for 6 d at 28?°C. Statistical analysis with a central composite design and response surface methodology showed that 0.15% (w/v) KH2PO4, 2% (w/v) corn stover, and an initial pH of 6.0 provided the best conditions for xylanase production. Furthermore, xylanase from P. crustosum FP 11 was effective in the bleaching of Eucalyptus kraft pulp, with a significant kappa efficiency of 35.04%. Therefore, the newly isolated P. crustosum FP 11 from the Atlantic Forest biome in Brazil showed two advantages: xylanase production with agricultural residue (corn stover) as a carbon source and an improvement in the bleaching of kraft pulp. Environmental pollution could thus be minimized because of a reduction in the use of chlorine as a bleaching agent.  相似文献   

17.
To clarify the role of excreted extracellular enzymes during long-term incubation in a pulp biobleaching system with white rot fungi, we developed a cultivation system in which a membrane filter is used; this membrane filter can prevent direct contact between hyphae and kraft pulp, but allows extracellular enzymes to attack the kraft pulp. Phanerochaete sordida YK-624 brightened the pulp 21.4 points to 54.0% brightness after a 5-day in vitro treatment; this value was significantly higher than the values obtained with Phanerochaete chrysosporium and Coriolus versicolor after a 7-day treatment. Our results indicate that cell-free, membrane-filtered components from the in vitro bleaching system are capable of delignifying unbleached kraft pulp. Obvious candidates for filterable reagents capable of delignifying and bleaching kraft pulp are peroxidase and phenoloxidase proteins. The level of secreted manganese peroxidase activity in the filterable components was substantial during strain YK-624 in vitro bleaching. A positive correlation between the level of manganese peroxidase and brightening of the pulp was observed.  相似文献   

18.
A very high level of alkalophilic and thermostable pectinase and xylanase has been produced from newly isolated strains of Bacillus subtilis and Bacillus pumilus respectively. Enzyme production for pectinase was carried out under SSF using combinations of cheap agricultural residues while xylanase was produced under submerged fermentation using wheat bran as substrate to minimize the cost of production of these enzymes Among the various substrates tested, the highest yield of pectinase production was observed by using combination of WB + CW (6592 U/g of dry substrate) supplemented with 4% yeast extract when incubated at 37 °C for 72 h using deionized water of pH 7.0 as moistening agent. The biobleaching effect of these cellulase free enzymes on kraft pulp was determined. Both xylanase and pectinase showed stability over a broad range of pH from 6 to 10 and temperature from 55 to 70 °C. The bleaching efficiency of the pectinase and xylanase on kraft pulp was maximum after 150 min at 60 °C using enzyme dosage of 5 IU/ml of each enzyme at 10% pulp consistency with about 16% reduction in kappa number and 84% reduction in permanganate number. Enzyme treated pulp when subjected to CDED1D2 steps, 25% reduction in chlorine consumption and upto 19% reduction in consumption of chlorine dioxide was observed for obtaining the same %ISO brightness. Also an increase of 22 and 84% in whiteness and fluorescence respectively and a decrease of approximately 19% in the yellowness of the biotreated pulp were observed by pretreatment of the pulp with our enzymatic mixture.  相似文献   

19.
Zheng Z  Li H  Li L  Shao W 《Biotechnology letters》2012,34(3):541-547
The recombinant laccase from Thermus thermophilus was applied to the biobleaching of wheat straw pulp. The best bleaching effect was when the pulp was treated with 3 U laccase g−1 dry pulp at 90°C, pH 4.5, 8% consistency for 1.5 h. Under these conditions, the pulp brightness was increased by 3.3% ISO, and the pulp kappa number was decreased by 5.6 U. Enzymatic treatment improved the bleachability of wheat straw pulp but caused no damage to the pulp fibers. The use of enzyme-treated pulp saved 25% H2O2 consumption in subsequent peroxide bleaching without decreasing the final brightness. Pulp biobleaching in the presence of 5 mM ABTS further increased the pulp brightness by 1.5% ISO. This is the first report on the application of laccase from T. thermophilus in the pulp and paper sector.  相似文献   

20.
Two laccase isozymes (I and II) produced by the white-rot fungus Trametes versicolor were purified, and their reactivities towards various substrates and lignins were studied. The N-terminal amino acid sequences of these enzymes were determined and compared to other known laccase sequences. Laccase II showed a very high sequence similarity to a laccase which was previously reported to depolymerize lignin. The reactivities of the two isozymes on most of the substrates tested were similar, but there were some differences in the oxidation rate of polymeric substrates. We found that the two laccases produced similar qualitative effects on kraft lignin and residual lignin in kraft pulp, with no evidence of a marked preference for depolymerization by either enzyme. However, the presence of the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) prevented and reversed the polymerization of kraft lignin by either laccase. The delignification of hardwood and softwood kraft pulps with the two isozymes and the mediator was compared; either laccase was able to reduce the kappa number of pulp, but only in the presence of 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号