首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spectroscopic technique total internal reflection fluorescence can be used for determination of the orientation of adsorbed fluorescent molecules. The underlying theory is presented in general terms and elaborated in detail for the case that the fluorescent group is a porphyrin ring. It is shown that order parameters of the orientation distribution can be obtained if both the fluorescence intensity and its polarization are measured as functions of the polarization of the incident laser beam. From these order parameters an approximation of the orientation distribution can be derived by the maximum-entropy method.  相似文献   

2.
Orientational fluorophores have been a useful tool in physical chemistry, biochemistry, and more recently structural biology due to the polarized nature of the light they emit and that fact that energy can be transferred between them. We present a practical scheme in which measurements of the intensity of emitted fluorescence can be used to determine limits on the mean and distribution of orientation of the absorption transition moment of membrane-bound fluorophores. We demonstrate how information about the orientation of fluorophores can be used to calculate the orientation factor kappa(2) required for use in FRET spectroscopy. We illustrate the method using images of AlexaFluor probes bound to MscL mechanosensitive transmembrane channel proteins in spherical liposomes.  相似文献   

3.
1. Hydrated electrons, produced by pulse radiolysis react with porphyrin cytochrome c with a bimolecular rate constant of 3-10(10) M-1 S-1 at 21 degrees C and pH 7.4. 2. After the reduction step an absorbance change with a half-life of 5 microns is observed with the spectral range of 430-470 nm. A relatively stable intermediate then decays with a half-life of 15 s. 3. The spectrum of the intermediate observed 50 microns after the generation of hydrated electrons shows a broad absorption band between 600 and 700 nm and a peak at 408 nm. The spectrum is attributed to the protonated form of an initially produced porphyrin anion radical. 4. Reduced porphyrin cytochrome c reacts with ferricytochrome c with a bimolecular constant of 2-10(5) M-1- S-1 in 2 mM phosphate pH 7.4, at 21 degrees C and of 2 - 10(6) M-1-S-1 under the same conditions but at 1 M ionic strength. It is proposed that electron transfer in an analogous exchange reaction between ferrocytochrome c and ferricytochrome c occurs via the exposed part of the haem.  相似文献   

4.
5.
Cytochrome c oxidase forms tight binding complexes with the cytochrome c analog, porphyrin cytochrome c. The behaviour of the reduced and pulsed forms of the oxidase with porphyrin cytochrome c have been followed as functions of ionic strength; this behaviour has been compared with that of the resting oxidase [Kornblatt, Hui Bon Hoa and English (1984) Biochemistry 23, 5906-5911]. All forms of the cytochrome oxidase studied bind one porphyrin cytochrome c per 'functional' cytochrome oxidase (two heme a); it appears as though porphyrin cytochrome c and cytochrome c compete for the same site on the oxidase. The resting enzyme binds cytochrome c 8 times more strongly than porphyrin cytochrome c; the reduced enzyme, in contrast, binds the two with almost equal affinity. In all three cases, resting, pulsed and reduced, the heme-to-porphyrin distance is estimated to be about 3 nm. The tight-binding complexes formed between cytochrome oxidase and porphyrin cytochrome c can be dissociated by salt. Debye-Hückel analysis of salt titrations indicate that the resting enzyme and the reduced enzyme are similar in that the product of the interaction charges on the two proteins is about -14. The product of the charges for the pulsed enzyme is -25, indicating that on average another positive and negative charge take part in the interaction of the two proteins. While there is one tight binding site for cytochrome c per two heme a, cytochrome c is able to 'communicate' with four heme a. In the absence of cytochrome c, electron transfer from tetramethylphenylenediamine to the oxidase to oxygen results in the conversion of the resting form to the 'oxygenated'; in the presence of cytochrome c, the same electron transfer results in the appearance of the 'pulsed' form. Cytochrome c titrations of the enzyme show that a ratio of only one cytochrome c to four heme a is sufficient to convert all the oxidase to the 'pulsed' form. Porphyrin cytochrome c, like cytochrome c, catalyzes the same conversion with the same stoichiometry. The binding data and salt effects indicate that major structural alterations occur in the oxidase as it is converted from the resting to the partially reduced and subsequently to the pulsed form.  相似文献   

6.
7.
8.
To understand the specificity and efficiency of protein-protein interactions promoting electron transfer, we evaluated the role of electrostatic forces in precollision orientation by the development of two new methods, computer graphics alignment of protein electrostatic fields and a systematic orientational search of intermolecular electrostatic energies for two proteins at present separation distances. We applied these methods to the plastocyanin/cytochrome c interaction, which is faster than random collision, but too slow for study by molecular dynamics techniques. Significant electrostatic potentials were concentrated on one-fourth (969 A2) of the plastocyanin surface, with the greatest negative potential centered on the Tyr-83 hydroxyl within the acidic patch, and on one-eighth (632 A2) of the cytochrome c surface, with the greatest positive potential centered near the exposed heme edge. Coherent electrostatic fields occurred only over these regions, suggesting that local, rather than global, charge complementarity controls productive recognition. The three energetically favored families of pre-collision orientations all directed the positive region surrounding the heme edge of cytochrome c toward the acidic patch of plastocyanin but differed in heme plane orientation. Analysis of electrostatic fields, electrostatic energies of precollision orientations with 12 and 6 A separation distances, and surface topographies suggested that the favored orientations should converge to productive complexes promoting a single electron-transfer pathway from the cytochrome c heme edge to Tyr-83 of plastocyanin. Direct interactions of the exposed Cu ligand in plastocyanin with the cytochrome c heme edge are not unfavorable sterically or electrostatically but should occur no faster than randomly, indicating that this is not the primary pathway for electron transfer.  相似文献   

9.
Interactions between fluorescent horse heart cytochrome c derivatives (e. g. porphyrin cytochrome c and Zn-porphyrin cytochrome c) with surfactant interfaces in reversed micellar solutions have been studied, using different spectroscopic techniques. Anionic [sodium bis(2-ethylhexyl)sulfosuccinate, AOT] and cationic (cetyltrime-thylammonium bromide, CTAB) surfactant solutions have been used in order to investigate the effects of charge interactions between proteins and interfaces. Circular dichroism reveals that much of the protein secondary structure is lost in AOT-reversed micelles, especially when the molar water/surfactant ratio, wo, is high (wo = 40), whereas in CTAB-reversed micelles secondary structure seems to be preserved. Time-resolved fluorescence measurements of the porphyrin in the cytochrome c molecule yields information about the changes in structure and the dynamics of the protein upon interaction with surfactant assemblies both in aqueous and in hydrocarbon solutions. With AOT as surfactant a strong interaction between protein and interface can be observed. The effects found in aqueous AOT solution are of the same kind as in hydrocarbon solution. In the CTAB systems the interactions between protein and surfactant are much less pronounced. The measured effects on the fluorescence properties of the proteins are different in aqueous and hydrocarbon solutions. In general, the observations can be explained by an electrostatic attraction between the overall positively charged protein molecules and the anionic AOT interface. Electrostatic attraction can also occur between the cytochrome c derivatives and CTAB because there is a negatively charged zone on the surface of the proteins. From the fluorescence anisotropy decays it can be concluded that in the CTAB-reversed micellar system these interactions are not important, whereas in an aqueous CTAB solution the proteins interact with surfactant molecules.  相似文献   

10.
11.
Intramolecular electron transfer in the electrostatic cytochrome c oxidase/cytochrome c complex was investigated using a novel photoactivatable dye. Laser photolysis of thiouredopyrenetrisulfonate (TUPS), covalently linked to cysteine 102 on yeast iso-1-cytochrome c, generates a triplet state of the dye, which donates an electron to cytochrome c, followed by electron transfer to cytochrome c oxidase. Time-resolved optical absorption difference spectra were collected at delay times from 100 ns to 200 ms between 325 and 650 nm. On the basis of singular value decomposition (SVD) and multiexponential fitting, three apparent lifetimes were resolved. A sequential kinetic mechanism is proposed from which the microscopic rate constants and spectra of the intermediates were determined. The triplet state of TUPS donates an electron to cytochrome c with a forward rate constant of approximately 2.0 x 10(4) s(-1). A significant fraction of the triplet returns back to the ground state on a similar time scale. The reduction of cytochrome c is followed by faster electron transfer from cytochrome c to Cu(A), with the equilibrium favoring the reduced cytochrome c. Subsequently, Cu(A) equilibrates with heme a with an apparent rate constant of approximately 1 x 10(4) s(-1). On a millisecond time scale, the oxidized TUPS returns to the ground state and heme a becomes reoxidized. The extracted intermediate spectra are in excellent agreement with model spectra of the postulated intermediates, supporting the proposed mechanism.  相似文献   

12.
13.
Porphyrin c, the iron-free derivative of cytochrome c, is a reasonably good model for cytochrome c binding to cytochrome c peroxidase (CcP). It binds with the same stoichiometry but only one-quarter as tightly as cytochrome c. CcP (resting, FeIII) and CcP X CN can both bind up to two molecules of porphyrin c. The binding of the first porphyrin c is tight (kd = 1 X 10(-9) M, pH 6, ionic strength mu = 0, 4 degrees C) and results in quenching of the porphyrin c fluorescence. The binding is sensitive to ionic strength. The binding of the second porphyrin c is looser (Kd unknown) and does not result in quenching of the porphyrin fluorescence. The binding of porphyrin c to the cyano form and the resting forms of CcP cannot be distinguished by our methods. ES is the first acceptor of electrons from c(II) and can bind at least two molecules of porphyrin c. The binding of the first porphyrin c is extremely tight, results in substantial quenching and is insensitive to ionic strength. The binding of porphyrin c to the loose site (Kd = 2 X 10(-9) M, pH 6, 4 degrees C, mu = 0) results, unlike the resting and cyano forms, in quenching of fluorescence of the second porphyrin c. The binding of the second porphyrin c to ES is sensitive to ionic strength. The calculated distances between porphyrin c and the hemes of CcP(FeIII) and ES are approximately 2.5 nm.  相似文献   

14.
15.
16.
We report investigations into the direction of orientation of cytochrome c oxidase in reconstituted vesicles and the factors determining this. Measurement of the enzyme orientation employed two independent techniques: monitoring of the level of haem reduction by membrane-permeant and membrane-impermeant reagents and a kinetic analysis of the reduction of a spin label covalently bound to the oxidase surface. The method of preparation of the oxidase vesicles had a pronounced effect on the enzyme orientation and the two measurement techniques agreed in indicating that the proportion of mitochondrially oriented enzyme was approximately 85% and 50% for vesicles prepared by cholate dialysis and sonication respectively. Our results show that the membrane orientation of the oxidase is determined by interactions between the phospholipid bilayer and the portion of the enzyme embedded therein, as opposed to gross physical constraints. In particular, we demonstrate that the orientation of the oxidase is affected by the fluidity and surface charge of the membrane.  相似文献   

17.
18.
19.
Cytochrome c insolubilized on to agarose gel was shown to be more resistant to denaturation and carboxymethylation than the soluble protein. These differences are discussed both with respect to the conformational changes that take place during denaturation of cytochrome c and with respect to the pH-dependent forms of carboxymethyl-cytochrome c.  相似文献   

20.
Hydrogen-deuterium exchange of cytochrome c. II. Effect of pH   总被引:4,自引:0,他引:4  
J H K?gi  D D Ulmer 《Biochemistry》1968,7(8):2718-2723
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号