首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Mathematical models of neurobehavioral function are useful both for understanding the underlying physiology and for predicting the effects of rest-activity-work schedules and interventions on neurobehavioral function. In a symposium titled "Modeling Human Neurobehavioral Performance I: Uncovering Physiologic Mechanisms" at the 2006 Society for Industrial and Applied Mathematics/Society for Mathematical Biology (SIAM/SMB) Conference on the Life Sciences, different approaches to modeling the physiology of human circadian rhythms, sleep, and neurobehavioral performance and their usefulness in understanding the underlying physiology were examined. The topics included key elements of the physiology that should be included in mathematical models, a computational model developed within a cognitive architecture that has begun to include the effects of extended wake on information-processing mechanisms that influence neurobehavioral function, how to deal with interindividual differences in the prediction of neurobehavioral function, the applications of systems biology and control theory to the study of circadian rhythms, and comparisons of these methods in approaching the overarching questions of the underlying physiology and mathematical models of circadian rhythms and neurobehavioral function. A unifying theme was that it is important to have strong collaborative ties between experimental investigators and mathematical modelers, both for the design and conduct of experiments and for continued development of the models.  相似文献   

2.
3.
4.
MOTIVATION: Sensitivity analysis provides key measures that aid in unraveling the design principles responsible for the robust performance of biological networks. Such metrics allow researchers to investigate comprehensively model performance, to develop more realistic models, and to design informative experiments. However, sensitivity analysis of oscillatory systems focuses on period and amplitude characteristics, while biologically relevant effects on phase are neglected. RESULTS: Here, we introduce a novel set of phase-based sensitivity metrics for performance: period, phase, corrected phase and relative phase. Both state- and phase-based tools are applied to free-running Drosophila melanogaster and Mus musculus circadian models. Each metric produces unique sensitivity values used to rank parameters from least to most sensitive. Similarities among the resulting rank distributions strongly suggest a conservation of sensitivity with respect to parameter function and type. A consistent result, for instance, is that model performance of biological oscillators is more sensitive to global parameters than local (i.e. circadian specific) parameters. Discrepancies among these distributions highlight the individual metrics' definition of performance as specific parametric sensitivity values depend on the defined metric, or output. AVAILABILITY: An implementation of the algorithm in MATLAB (Mathworks, Inc.) is available from the authors. SUPPLEMENTARY INFORMATION: Supplementary Data are available at Bioinformatics online.  相似文献   

5.
Sleep, circadian rhythm, and neurobehavioral performance measures were obtained in five astronauts before, during, and after 16-day or 10-day space missions. In space, scheduled rest-activity cycles were 20-35 min shorter than 24 h. Light-dark cycles were highly variable on the flight deck, and daytime illuminances in other compartments of the spacecraft were very low (5.0-79.4 lx). In space, the amplitude of the body temperature rhythm was reduced and the circadian rhythm of urinary cortisol appeared misaligned relative to the imposed non-24-h sleep-wake schedule. Neurobehavioral performance decrements were observed. Sleep duration, assessed by questionnaires and actigraphy, was only approximately 6.5 h/day. Subjective sleep quality diminished. Polysomnography revealed more wakefulness and less slow-wave sleep during the final third of sleep episodes. Administration of melatonin (0.3 mg) on alternate nights did not improve sleep. After return to earth, rapid eye movement (REM) sleep was markedly increased. Crewmembers on these flights experienced circadian rhythm disturbances, sleep loss, decrements in neurobehavioral performance, and postflight changes in REM sleep.  相似文献   

6.
Circadian rhythms in physiological processes and behaviors were compared with hypothalamic circadian rhythms in norepinephrine (NE) metabolites, adrenergic transmitter receptors, cAMP, cGMP and suprachiasmatic nucleus (SCN) arginine vasopressin (AVP) in a single population of rats under D:D conditions. Eating, drinking and locomotor activity were high during the subjective night (the time when lights were out in L:D) and low during the subjective day (the time when lights were on in L:D). Plasma corticosterone concentration rose at subjective dusk and remained high until subjective dawn. Binding to hypothalamic alpha 1- and beta-adrenergic receptors also peaked during the subjective night. Cyclic cGMP concentration was elevated throughout the 24-hr period except for a trough at dusk, whereas DHPG concentration peaked at dawn. Arginine vasopressin levels in the suprachiasmatic nucleus peaked in the middle of the day. No rhythm was found either in binding to the alpha 2-adrenergic receptor, or in MHPG or cAMP concentration. Behavioral and corticosterone rhythms, therefore, are parallel to rhythms in hypothalamic alpha 1- and beta-receptor binding and NE-release. Cyclic GMP falls only at dusk, suggesting the possibility that cGMP inhibits activity much of the day and that at dusk the inhibition of nocturnal activity is removed. SCN AVP, on the other hand, peaking at 1400 hr, may play a role in the pacemaking function of the SCN that drives these other rhythms.  相似文献   

7.
The present studies evaluated to what extent duration (all-night or 4-hour exposures) and timing of nocturnal bright light (BL) (beginning or end of the night) modulate effects on vigilance. The results showed that all-night BL exposure is able to alleviate the nocturnal decrements in alertness and performance. However, under certain circumstances, this continuous BL exposure may induce adverse effects on mood and finally reveal to be counterproductive. Shorter BL exposure (4 h) during nighttime helps improve mood and performance, although the effects of short BL pulses were less efficacious than all-night BL exposure. The latter part of the night appears the best time for using the alerting effect of BL. The immediate alerting effect of BL seems to be mediated by a global activation of the central nervous system.  相似文献   

8.
Wang Y  Ke C  Brown MB 《Biometrics》2003,59(4):804-812
Medical studies often collect physiological and/or psychological measurements over time from multiple subjects, to study dynamics such as circadian rhythms. Under the assumption that the expected response functions of all subjects are the same after shift and scale transformations, shape-invariant models have been applied to analyze this kind of data. The shift and scale parameters provide efficient and interpretable data summaries, while the common shape function is usually modeled nonparametrically, to provide flexibility. However, due to the deterministic nature of the shift and scale parameters, potential correlations within a subject are ignored. Furthermore, the shape of the common function may depend on other factors, such as disease. In this article, we propose shape-invariant mixed effects models. A second-stage model with fixed and random effects is used to model individual shift and scale parameters. A second-stage smoothing spline ANOVA model is used to study potential covariate effects on the common shape function. We apply our methods to a real data set to investigate disease effects on circadian rhythms of cortisol, a hormone that is affected by stress. We find that patients with Cushing's syndrome lost circadian rhythms and their 24-hour means were elevated to very high levels. Patients with major depression had the same circadian shape and phases as normal subjects. However, their 24-hour mean levels were elevated and amplitudes were dampened for some patients.  相似文献   

9.
10.
Two clock-controlled processes, overt circadian rhythmicity and the photoperiodic induction of diapause, are described in the blow fly,Calliphora vicina and the fruit fly,Drosophila melanogaster. Circadian locomotor rhythms of the adult flies reflect endogenous, self-sustained oscillations with a temperature compensated period. The free-running rhythms become synchronised (entrained) to daily light:dark cycles, but become arrhythmic in constant light above a certain intensity. Some flies show fragmented rhythms (internal desynchronisation) suggesting that overt rhythmicity is the product of a multioscillator (multicellular) system. Photoperiodic induction of larval diapause inC. vicina and of ovarian diapause inD. melanogaster is also based on the circadian system but seems, to involve a separate mechanism at both the molecular and neuronal levels. For both processes in both species, the compound eyes and ocelli are neither essential nor necessary for photic entrainment, and the circadian clock mechanism is not within the optic lobes. The central brain is the most likely site for both rhythm generation and extra-optic photoreception. InD. melanogaster, a group of lateral brain neurons has been identified as important circadian pacemaker cells, which are possibly also photo-sensitive. Similar lateral brain neurons, staining for arrestin, a protein in the phototransduction ‘cascade’ and a selective marker for photoreceptors in both vertebrates and invertebrates, have been identified inC. vicina. Much less is known about the cellular substrate of the photoperiodic mechanism, but this may involve thepars intercerebralis region of the mid-brain.  相似文献   

11.
12.
Endogenous circadian rhythmicity and sleep-wake homeostasis are robust regulators of human alertness and performance, yet few studies have examined how these regulatory processes affect motivation. Moreover, the influence of alertness and motivation on performance, independent of circadian phase and hours awake, has not been studied. Healthy subjects, 12 males and 3 females, ages 20 to 41, participated in a 2-week 28-h forced desynchrony protocol to address these issues. Subjects performed a battery of tests every 2 hours during scheduled wakefulness. Performance on a mathematical addition test and ratings of alertness and motivation on visual analog scales were analyzed. Performance scores were categorized as being associated with the highest or lowest alertness and motivation ratings for each circadian phase/hours awake bin to determine whether high levels of alertness and motivation resulted in higher performance scores above and beyond the effects of circadian and homeostatic regulation. Motivation varied significantly as a function of circadian phase and hours awake. Motivation and alertness were correlated. When circadian phase and hours awake were accounted for, performance was better when alertness and motivation ratings were highest and worse when those ratings were lowest. The present findings suggest that human performance is influenced by alertness and motivation independent of circadian phase and hours awake. Future studies examining the influence of circadian phase and sleep-wake homeostasis on human performance also should assess alertness and motivation to aid in the interpretation of performance data. Such studies also may aid in the development of countermeasures to improve human performance.  相似文献   

13.
The authors studied longitudinally four healthy young adults to explore if habitual evening intake of a "moderate" amount of wine alters parameters, including period (τ) of circadian rhythms. Subjects, synchronized by diurnal activity from 07.30?h?±?60?min to 23.00?h?±?90?min and nocturnal rest, were studied during a continuous 22-day span: 11 days without alcohol (control) and 11 days with a glass (200?mL) of wine nightly at supper (alcohol). The amount of alcohol ingested with dinner ranged from 0.28 to 0.42?g/kg/24?h/participant and the estimated evening blood alcohol level ranged from 0.02 to 0.10?g/L/participant. Single reaction time (SRT; yellow light signal), three-choice reaction time (CRT) (red, green, and yellow signals) of both hands, related cumulated errors (c-errors), as well as oral temperature (OT) and grip strength (GS) were measured four to seven times/24?h. Time series were analyzed individually to quantify 24-h means (M), circadian τ (power spectra), and cosinor, and correlation, χ(2), and t tests were performed. The sleep-wake τ (actography) was 24?h in every subject for both conditions. With alcohol, all subjects showed an OT circadian τ shorter than the control one. The SRT circadian M was longer (poorer performance) with wine versus control in three subjects, while CRT was longer with wine versus control in only one subject. Correlation analyses also showed the detrimental effect of alcohol on the same variables. Number of days with <2 c-errors was predominant in control and decreased with alcohol, especially for SRT. The desynchronization of the 10 different documented rhythms was greater with alcohol with reference to control in two of the four studied subjects. This work shows that habitual "moderate" wine drinking at supper reduces the performance of subjects, increases the level of c-errors/24?h, especially for SRT, suggesting a "moderate" amount of alcohol has the potential to increase accident risk, and it can also desynchronize circadian time organization.  相似文献   

14.
Circadian time structure in shift working Indian nurses was studied. In shift workers desynchronization between circadian rhythms in different physiological variables was observed. Circadian amplitudes of oral temperature, pulse and random add speed rhythms decreased significantly in shift workers as compared to control subjects. Circadian mesors of performance rhythms increased significantly in shift workers indicating that the time taken by them was more for performing the tasks. It can be concluded that the subjects studied herein are intolerant to shift work and amplitude decrement may be considered as a chronobiologic index to determine the tolerance of individual workers to shift work.  相似文献   

15.
A neural theory of the circadian pacemaker within the hypothalamic suprachiasmatic nuclei (SCN) is used to explain parametric data about mammalian operant behavior. The intensity, duration, and patterning of ultradian activity-rest cycles and the duration of circadian periods due to parametric (LL) and nonparametric (LD) lighting regimes are simulated. Paradoxical data about split rhythms and after-effects are explained using homeostatic and nonhomeostatic neural mechanisms that modulate pacemaker activity. These modulatory mechanisms enable the pacemaker to adjust to pervasive changes in its lighting regime, as during the passage of seasons, and to ultradian changes in internal metabolic conditions. The model circadian mechanisms are homologous to mechanisms that model hypothalamically mediated appetitive behaviors, such as eating. The theory thus suggests that both circadian and appetitive hypothalamic circuits are constructed from similar neural components. Mechanisms of transmitter habituation, opponent feedback interactions between on-cells and off-cells, homeostatic negative feedback, and conditioning are used in both the circadian and the appetitive circuits. Output from the SCN circadian pacemaker is assumed to modulate the sensitivity of the appetitive circuits to external and internal signals by controlling their level of arousal. Both underarousal and overarousal can cause abnormal behavioral syndromes whose properties have been found in clinical data. A model pacemaker can also be realized as an intracellular system.  相似文献   

16.
17.
18.
19.
岳敏  杨禹  郭改丽  秦曦明 《遗传》2017,39(12):1122-1137
生物钟对生物机体的生存与环境适应具有着重要意义,其相关研究近年来受到人们的广泛关注。生物钟的重要性质之一是内源节律的周期性,当前的研究认为这种周期性是由生物钟相关基因转录翻译的多反馈环路构成核心机制调控着近似24 h的节律振荡。哺乳动物的生物钟系统存在一个多层次的结构,包括位于视交叉上核的主时钟和外周器官和组织的子时钟。虽然主时钟和子时钟存在的组织不同,但是参与调节生物钟的分子机制是一致的。近年来,通过正向、反向遗传学方法和表观遗传学的研究方法,对生物钟的分子机制的解析和认知愈发深入。本文在简单回顾生物钟基因发现历史的基础上,重点从遗传学和表观遗传学两个方面,从振荡周期的角度,对哺乳动物生物钟分子机制的研究进展进行了综述性介绍,以期为靶向调节生物钟来改善机体的稳态系统的研究提供参考,同时希望能促进时间生物学领域与更多其他领域形成交叉研究。  相似文献   

20.
Evolution and selective advantage of circadian rhythms   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号