首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In animals, the small GTP-binding proteins, Rac and Rho, of theras superfamily participate in the signal rransduction pathway that regulates the organization of the actin cytoskeleton. We report here on the characterization of two distinct cDNA clones isolated from a cotton fiber cDNA library that code for homologs of animal Rac proteins. Using gene-specific probes, we have determined that amphidiploid cotton contains two genes that code for each of the two Rac proteins, designated Rac13 and Rac9, respectively. The gene for Rac13 shows highly enhanced expression in developing cotton fibers, with maximal expression occurring at the time of transition between primary and secondary wall synthesis. This is also the time at which reorganization of the cytoskeleton occurs, and thus the pattern of expression of Rac13 is consistent with its possible role, analogous to animal Rac, in the signal transduction pathway that controls cytoskeletal organization.  相似文献   

2.
Through exploring potential analogies between cotton seed trichomes (or cotton fiber) and arabidopsis shoot trichomes we discovered that CesAs from either the primary or secondary wall phylogenetic clades can support secondary wall thickening. CesA genes that typically support primary wall synthesis, AtCesA1,2,3,5, and 6, underpin expansion and secondary wall thickening of arabidopsis shoot trichomes. In contrast, apparent orthologs of CesA genes that support secondary wall synthesis in arabidopsis xylem, AtCesA4,7, and 8, are up-regulated for cotton fiber secondary wall deposition. These conclusions arose from: (a) analyzing the expression of CesA genes in arabidopsis shoot trichomes; (b) observing birefringent secondary walls in arabidopsis shoot trichomes with mutations in AtCesA4, 7, or 8; (c) assaying up-regulated genes during different stages of cotton fiber development; and (d) comparing genes that were co-expressed with primary or secondary wall CesAs in arabidopsis with genes up-regulated in arabidopsis trichomes, arabidopsis secondary xylem, or cotton fiber during primary or secondary wall deposition. Cumulatively, the data show that: (a) the xylem of arabidopsis provides the best model for secondary wall cellulose synthesis in cotton fiber; and (b) CesA genes within a "cell wall toolbox" are used in diverse ways for the construction of particular specialized cell walls.  相似文献   

3.
两个棉花Rac蛋白基因的克隆与表达分析   总被引:6,自引:0,他引:6  
为研究棉花纤维起始和伸长的分子机理,在棉花纤维EST序列分析的基础上,从棉花纤维中扩增并克隆了2个棉花Rac蛋白的cDNA基因,分别命名为GhRacA和GhRacB。GhRacA cDNA长959bp,推测的编码蛋白包含211个氨基酸。GhRacB cDNA长920bp,编码195个氨基酸的蛋白。GhRacA和GhRacB蛋白均含有GTP/GDP结合和激活区域、Effector区和碱性氨基酸区。GhRacB的C末端有保守的异戊烯基化位点CSIL,而GhRacA没有明显的异戊烯基化位点。序列比较分析表明,GhRacA和GhRacB是2个新的棉花Rac蛋白。RT-PCR分析表明,GhRacA和GhRacB在根、下胚轴、茎、叶和纤维中都有表达,但均在棉花纤维起始和伸长时期有优势表达,推测2个基因在棉花纤维的早期发育中可能有重要的功能。  相似文献   

4.
A novel role for RhoGDI as an inhibitor of GAP proteins.   总被引:16,自引:3,他引:13       下载免费PDF全文
J F Hancock  A Hall 《The EMBO journal》1993,12(5):1915-1921
RhoGDI inhibits guanine nucleotide dissociation from post-translationally processed Rho and Rac proteins but its biochemical role in vivo is unknown. We show here that N-terminal effector site mutations in the Rac protein do not compromise its interaction with RhoGDI and that, whilst geranylgeranylation and -AAX proteolysis of the C-terminal CAAX motif of Rac1 and RhoA are required for efficient interaction with RhoGDI, methylesterification of the C-terminal cysteine residue is not required. In vitro, RhoGDI can form stable complexes with Rho and Rac proteins in both the GTP and GDP bound states. Furthermore the Rac-GTP--RhoGDI complex is resistent to the action of recombinant RhoGAP and recombinant BCR. Thus GDI, by complexing with Rac-GTP and preventing GAP stimulated GTP hydrolysis, may allow transit of the activated form of the Rac protein between physically separated activator and effector proteins in the cell.  相似文献   

5.
Fibrotic remodeling in lung injury is a major cause of morbidity. The mechanism that mediates the ongoing fibrosis is unclear, and there is no available treatment to abate the aberrant repair. Reactive oxygen species (ROS) have a critical role in inducing fibrosis by modulating extracellular matrix deposition. Specifically, mitochondrial hydrogen peroxide (H2O2) production by alveolar macrophages is directly linked to pulmonary fibrosis as inhibition of mitochondrial H2O2 attenuates the fibrotic response in mice. Prior studies indicate that the small GTP-binding protein, Rac1, directly mediates H2O2 generation in the mitochondrial intermembrane space. Geranylgeranylation of the C-terminal cysteine residue (Cys189) is required for Rac1 activation and mitochondrial import. We hypothesized that impairment of geranylgeranylation would limit mitochondrial oxidative stress and, thus, abrogate progression of pulmonary fibrosis. By targeting the isoprenoid pathway with a novel agent, digeranyl bisphosphonate (DGBP), which impairs geranylgeranylation, we demonstrate that Rac1 mitochondrial import, mitochondrial oxidative stress, and progression of the fibrotic response to lung injury are significantly attenuated. These observations reveal that targeting the isoprenoid pathway to alter Rac1 geranylgeranylation halts the progression of pulmonary fibrosis after lung injury.  相似文献   

6.
The generation of reactive oxygen species, particularly H(2)O(2), from alveolar macrophages is causally related to the development of pulmonary fibrosis. Rac1, a small GTPase, is known to increase mitochondrial H(2)O(2) generation in macrophages; however, the mechanism by which this occurs is not known. This study shows that Rac1 is localized in the mitochondria of alveolar macrophages from asbestosis patients, and mitochondrial import requires the C-terminal cysteine of Rac1 (Cys-189), which is post-translationally modified by geranylgeranylation. Furthermore, H(2)O(2) generation mediated by mitochondrial Rac1 requires electron transfer from cytochrome c to a cysteine residue on Rac1 (Cys-178). Asbestos-exposed mice harboring a conditional deletion of Rac1 in macrophages demonstrated decreased oxidative stress and were significantly protected from developing pulmonary fibrosis. These observations demonstrate that mitochondrial import and direct electron transfer from cytochrome c to Rac1 modulates mitochondrial H(2)O(2) production in alveolar macrophages pulmonary fibrosis.  相似文献   

7.
We have synthesized [21-asparagine diethylamide-A]insulin, which differs from the parent molecule in that the free carboxyl group of the C-terminal amino acid residue, asparagine, of the A chain moiety has been converted to a diethylamide group. The analogue displays equivalent potency in receptor binding and biological activity, 48% and 56%, respectively, relative to bovine insulin. In contrast, we have reported previously [Burke, G. T., Chanley, J. D., Okada, Y., Cosmatos, A., Ferderigos, N., & Katsoyannis, P. G. (1980) Biochemistry 19, 4547-4556] that [21-asparaginamide-A]insulin exhibits a divergence in these properties, ca. 60% in receptor binding and ca. 13% in biological activity. The disparity in the biological behavior of these analogues is discussed, and we ascribe the modulation of biological activity independent of receptor binding activity observed between these analogues to the difference in the negativity of the carbonyl oxygen of the A chain moiety C-terminal amino acid residue.  相似文献   

8.
9.
Through exploring potential analogies between cotton seed trichomes (or cotton fiber) and arabidopsis shoot trichomes we discovered that CesAs from either the primary or secondary wall phylogenetic clades can support secondary wall thickening. CesA genes that typically support primary wall synthesis, AtCesA1,2,3,5, and 6, underpin expansion and secondary wall thickening of arabidopsis shoot trichomes. In contrast, apparent orthologs of CesA genes that support secondary wall synthesis in arabidopsis xylem, A...  相似文献   

10.
Identification of cotton microRNAs and their targets   总被引:10,自引:0,他引:10  
Zhang B  Wang Q  Wang K  Pan X  Liu F  Guo T  Cobb GP  Anderson TA 《Gene》2007,397(1-2):26-37
  相似文献   

11.
12.
The sites of thyroid hormone formation in rabbit thyroglobulin   总被引:1,自引:0,他引:1  
Rabbit thyroglobulin (Tg) was labeled in vivo with 125I and purified by gel filtration. Separation by high performance liquid chromatography (HPLC) of tryptic digests of S-cyanoethylated Tg yielded four major iodothyronine-containing peaks, designated A, B, C, and D. These were further purified on HPLC and sequenced for identification of amino acid residues and for location of the iodothyronine by 125I counting. The published primary structure for bovine Tg, derived from cDNA sequencing of the Tg gene (Mercken, L., Simons, M.J., Swillens, S., Massaer, M., and Vassart, G. (1985) Nature 316, 647-651), permitted tentative location of the rabbit hormonogenic peptides within the Tg polypeptide chain. Site A, corresponding to bovine residue 5, contained 44% of Tgs [125I]T4 (thyroxine) and 25% of its [125I]T3 (triiodothyronine); its specific activity of iodine was higher than that for other sites, indicating priority of iodination. Site B, containing 24% of Tgs [125I]T4 and 18% of its [125I]T3, corresponded to bovine residue 2555. Site C, at the third residue from the C terminus (bovine residue 2748), was the major T3 site, accounting for over 50% of Tgs [125I]T3. The amino acid sequence around this site shows less homology among different animal species than do those flanking the other hormonogenic sites. Site D accounted for 17% of Tgs [125I]T4 and corresponded to bovine Tyr-1291, in the midportion of Tgs polypeptide chain. The three major T4-forming sites had the sequence Asp-Tyr (sites B and D) or Glu-Tyr (site A), while the sequence Ser-Tyr-Ser appeared to favor T3 synthesis (site C), suggesting an important influence of primary structure on hormonogenesis. We conclude that site A is the major T4-forming site and site C the major T3-forming one, but others are available and offer the opportunity for flexibility in meeting different demands for hormone formation.  相似文献   

13.
14.
The herbicide 2,6-dichlorobenzonitrile (DCB) is an effective and apparently specific inhibitor of cellulose synthesis in higher plants. We have synthesized a photoreactive analog of DCB (2,6-dichlorophenylazide [DCPA]) for use as an affinity-labeling probe to identify the DCB receptor in plants. This analog retains herbicide activity and inhibits cellulose synthesis in cotton fibers and tobacco cells in a manner similar to DCB. When cotton fiber extracts are incubated with [3H]DCPA and exposed to ultraviolet light, an 18 kilodalton polypeptide is specifically labeled. About 90% of this polypeptide is found in the 100,000g supernatant, the remainder being membrane-associated. Gel filtration and nondenaturing polyacrylamide gel electrophoresis of this polypeptide indicate that it is an acidic protein which has a similar size in its native or denatured state. The amount of 18 kilodalton polypeptide detectable by [3H]DCPA-labeling increases substantially at the onset of secondary wall cellulose synthesis in the fibers. A similar polypeptide, but of lower molecular weight (12,000), has been detected upon labeling of extracts from tomato or from the cellulosic alga Chara corallina. The specificity of labeling of the 18 kilodalton cotton fiber polypeptide, coupled with its pattern of developmental regulation, implicate a role for this protein in cellulose biosynthesis. Being, at most, only loosely associated with membranes, it is unlikely to be the catalytic polypeptide of the cellulose synthase, and we suggest instead that the DCB receptor may function as a regulatory protein for β-glucan synthesis in plants.  相似文献   

15.
16.
17.
18.
In the preceeding paper (Brown, D. R., Roth, M. J., Reinberg, D., and Hurwitz, J. (1984) J. Biol. Chem. 259, 10545-10555), it was shown that following bacteriophage phi X174 (phi X) DNA synthesis in vitro using purified proteins, the phi X A protein could be detected covalently linked to nascent 32P-labeled DNA. This phi X A protein-[32P]DNA complex was the product of the reinitiation reaction. The phi X A protein-[32P]DNA complex could be trapped as a protein-32P-oligonucleotide complex by the inclusion of ddGTP in reaction mixtures. In this report, the structure of the phi X A protein-32P-oligonucleotide complex has been analyzed. The DNA sequence of the oligonucleotide bound to the phi X A protein has been determined and shown to be homologous to the phi X (+) strand sequence immediately adjacent (3') to the replication origin. The phi X A protein was directly linked to the 5' position of a dAMP residue of the oligonucleotide; this residue corresponded to position 4306 of the phi X DNA sequence. The phi X A protein-32P-oligonucleotide complex was exhaustively digested with either trypsin or proteinase K and the 32P-labeled proteolytic fragments were analyzed. Each protease yielded two different 32P-labeled peptides in approximately equimolar ratios. The two 32P-labeled peptides formed after digestion with trypsin (designated T1 and T2) and with proteinase K (designated PK1 and PK2) were isolated and characterized. Digestion of peptide T1 with proteinase K yielded a product which co-migrated with peptide PK2. In contrast, peptide T2 was unaffected by digestion with proteinase K. These results suggest that the phi X A protein contains two active sites that are each capable of binding covalently to DNA. The peptide-mononucleotide complexes T1-[32P]pdA and T2-[32P]pdA were isolated and subjected to acid hydrolysis in 6.0 N HCl. In each case, the major 32P-labeled products were identified as [32P] phosphotyrosine and [32P]Pi. This indicates that each active site of the phi X A protein participates in a phosphodiester linkage between a tyrosyl moiety of the protein and the 5' position of dAMP.  相似文献   

19.
Cotton fiber is an important natural textile fiber due to its exceptional length and thickness. These properties arise largely through primary and secondary cell wall synthesis. The cotton fiber of commerce is a cellulosic secondary wall surrounded by a thin cuticulated primary wall, but there were only sparse details available about the polysaccharides in the fiber cell wall of any cotton species. In addition, Gossypium hirsutum (Gh) fiber was known to have an adhesive cotton fiber middle lamella (CFML) that joins adjacent fibers into tissue-like bundles, but it was unknown whether a CFML existed in other commercially important cotton fibers. We compared the cell wall chemistry over the time course of fiber development in Gh and Gossypium barbadense (Gb), the two most important commercial cotton species, when plants were grown in parallel in a highly controlled greenhouse. Under these growing conditions, the rate of early fiber elongation and the time of onset of secondary wall deposition were similar in fibers of the two species, but as expected the Gb fiber had a prolonged elongation period and developed higher quality compared to Gh fiber. The Gb fibers had a CFML, but it was not directly required for fiber elongation because Gb fiber continued to elongate rapidly after CFML hydrolysis. For both species, fiber at seven ages was extracted with four increasingly strong solvents, followed by analysis of cell wall matrix polysaccharide epitopes using antibody-based Glycome Profiling. Together with immunohistochemistry of fiber cross-sections, the data show that the CFML of Gb fiber contained lower levels of xyloglucan compared to Gh fiber. Xyloglucan endo-hydrolase activity was also higher in Gb fiber. In general, the data provide a rich picture of the similarities and differences in the cell wall structure of the two most important commercial cotton species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号