首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parathyroid hormone (PTH) increases renal calcium absorption exclusively in cortical thick limbs and distal tubules. Lack of sufficient tissue has precluded detailed biochemical study of the mechanisms responsible for the hypercalcemic effect of PTH. Therefore, we assessed PTH action on calcium transport in Madin-Darby canine kidney (MDCK) cells, a cell line expressing distal characteristics, to determine its suitability as a model for analyzing PTH action. Calcium transport across MDCK cells grown to confluence on porous filters was measured at 37 degrees C in Ussing chambers. Mucosal-to-serosal calcium fluxes (JCa, mol/min cm-2 x 10(-9)) were measured with 45Ca at -3, -1, 5, 10, and 20 min; agonist was added at 0 min. Basal JCa averaged 0.98. PTH at 0.2 microM increased JCa by 12% (P less than 0.05) and 1 microM PTH by 70% (P less than 0.01). Calcitonin (1 microM) had no effect on JCa. The fact that high concentrations of dibutyryl cAMP (1 mM) and forskolin (10 microM) increased JCa by only 37% and 22%, respectively, suggested that cAMP-independent mechanisms may participate in PTH-stimulated JCa. Therefore we examined the effect of other putative second messengers. In the presence of 2 mM external [Ca], 10 nM A23187 increased JCa by 88%, and 10 microM A23187 increased JCa by 121%. Addition of 10 microM phorbol 12-myristate 13-acetate (PMA) increased JCa by 60%. We conclude that: 1) PTH specifically stimulates unidirectional calcium absorption in MDCK cells; 2) both adenylate cyclase-coupled and calcium-coupled receptors may participate in signaling the response to PTH; and 3) confluent MDCK cells represent a useful experimental model for elucidating the biochemical mechanisms involved in the renal hypercalcemic action of PTH.  相似文献   

2.
Insulin and parathyroid hormone (PTH) regulate glucose metabolism in bone cells. In order to differentiate between the effects of these hormones and to compare the potency of insulin with that of insulin-like growth factor (IGF) I, we treated rat bone-derived osteoblastic (PyMS) cells for different time periods and at different concentrations with insulin, IGF I, or PTH, and measured [1-(14)C]-2-deoxy-D-glucose (2DG) uptake and incorporation of D-[U-(14)C] glucose into glycogen. 2DG uptake was Na-independent with an apparent affinity constant (K (M)) of ~2 mmol/l. Expression of the high affinity glucose transporters (GLUT), GLUT1 and GLUT3 but not of GLUT4, was found by Northern and Western analysis. Similar to the findings with primary rat osteoblasts, but distinct from those in rat fibroblasts, 2DG uptake and glycogen synthesis were increased in this cell line after exposure to low concentrations (0.1 nmol/l and above) of PTH. IGF I at low doses (0.3 nmol/l and above) or insulin at higher doses (1 nmol/l and above) stimulated 2DG uptake and [(3)H] thymidine incorporation into DNA. 2DG transport was enhanced already after 30 min of IGF I treatment whereas the effect of PTH became significant after 6 h. It is concluded that IGF I rather than insulin may be a physiological regulator of 2DG transport and glycogen synthesis in osteoblasts.  相似文献   

3.
Although the renal proximal tubular epithelial cells are targeted in a variety of inflammatory diseases of the kidney, the signaling mechanism by which tumor necrosis factor (TNF)-alpha exerts its effects in these cells remains unclear. Here, we report that TNF-alpha elicits antiapoptotic effects in opossum kidney cells and that this response is mediated via actin redistribution through a novel signaling mechanism. More specifically, we show that TNF-alpha prevents apoptosis by inhibiting the activity of caspase-3 and this effect depends on actin polymerization state and nuclear factor-kappaB activity. We also demonstrate that the signaling cascade triggered by TNF-alpha is governed by the phosphatidylinositol-3 kinase, Cdc42/Rac1, and phospholipase (PLC)-gamma1. In this signaling cascade, Cdc42 was found to be selectively essential for PLC-gamma1 activation, whereas phosphatidylinositol-3,4,5-triphosphate alone is not sufficient to activate the phospholipase. Moreover, PLC-gamma1 was found to associate in vivo with the small GTPase(s). Interestingly, PLC-gamma1 was observed to associate with constitutively active (CA) Cdc42V12, but not with CA Rac1V12, whereas no interaction was detected with Cdc42(T17N). The inactive Cdc42(T17N) and the PLC-gamma1 inhibitor U73122 prevented actin redistribution and depolymerization, confirming that both signaling molecules are responsible for the reorganization of actin. Additionally, the actin filament stabilizer phallacidin potently blocked the nuclear translocation of nuclear factor-kappaB and its binding activity, resulting in abrogation of the TNF-alpha-induced inhibition of caspase-3. To conclude, our findings suggest that actin may play a pivotal role in the response of opossum kidney cells to TNF-alpha and implicate Cdc42 in directly regulating PLC-gamma1 activity.  相似文献   

4.
The activity of Na+-H+, exchange was studied in a cultured cell line derived from opossum kidney (OK cells). The activity of the exchanger was measured either as the amiloride (2 mM) inhibitable 22Na flux in acid-loaded cells, or as the Na+-dependent and amiloride-sensitive recovery of intracellular pH (pHi) from an acid load. Initial rates of tracer flux were analyzed in confluent monolayers while changes in pHi were evaluated in suspensions of trypsinized cells which had been loaded with 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein. Both 8-bromo-cAMP and 8-bromo-cGMP inhibit the activity of the exchanger in a dose-dependent manner. Maximal inhibition due to 8-bromo-cAMP was about 50% and was attained with 0.75 mM of the cyclic nucleotide. Parathyroid hormone (10(-9)-10(-7) M) and atrial natriuretic peptide (10(-7) M) also inhibit the activity of the exchanger. By measuring the rate of Na+-dependent pHi recovery from different starting pHi values, evidence was obtained for a cyclic nucleotide-dependent decrease in the response of Na+-H+ exchange to intracellular acidification. We conclude that cAMP and cGMP are intracellular messengers in the hormone-dependent regulation of Na+-H+ exchange activity in renal epithelial cells.  相似文献   

5.
Endocrine cells of the anterior pituitary are controlled by the central nervous system through hormonal interactions and are not believed to receive direct synaptic connections from the brain. Studies suggest that some pituitary cells may be modulated by the neurotransmitter glutamate. We investigated prolactin (PRL)-releasing cells of the anterior pituitary of a euryhaline fish, the tilapia (Oreochromis mossambicus), for the presence of possible glutamate receptors (GluRs). Fura-2 imaging addressed the ability of glutamate to increase intracellular calcium. We observed a dose-dependent increase in intracellular calcium with transient perfusion (1-2 min) of glutamate (10 nM to 1 mM) in two-thirds of imaged cells. This increase was attenuated by the ionotropic GluR antagonist kynurenic acid (0.5-1.0 mM). The increase was also blocked or attenuated by antagonists of L-type voltage-gated calcium channels. The GluR agonist alpha-amino-3-hydroxy-5-methylisoxazole propionic acid (AMPA; 100 microM) produced intracellular calcium increases that were reversibly blocked by the selective AMPA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). In contrast, the selective agonist N-methyl-D-aspartate (NMDA; 100 microM to 1 mM in magnesium-free solution with 10 microM glycine) had no effect on intracellular calcium. Radioimmunoassays demonstrated that glutamate stimulated PRL release. CNQX but not the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid blocked this release. Antibodies for mammalian AMPA- and NMDA-type GluR produced a similar punctate immunoreactivity in the periphery of PRL cells. However, the NMDA antibody recognized a protein of a different molecular mass in PRL cells compared with brain cells. These results clearly indicate the presence of GluRs on tilapia PRL cells that can stimulate PRL release.  相似文献   

6.
The superoxide dismutase isoenzymes (SOD) play a key role in scavenging, O*2- radicals. In contrast with previous studies, recent data have shown that human neuroblastoma cells are able to export the cytosolic Cu,Zn superoxide dismutase (SOD1), thus suggesting a paracrine role exerted by this enzyme in the nervous system. To evaluate whether SOD1 could activate intracellular signalling pathways, the functional interaction between SOD1 and human neuroblastoma SK-N-BE cells was investigated. By analyzing the surface binding of biotinylated SOD1 on SK-N-BE cells and by measuring intracellular calcium concentrations and PKC activity, we demonstrated that SOD1 specifically interacts in a dose-dependent manner with the cell surface membrane of SK-N-BE. This binding was able to activate a PLC-PKC-dependent pathway that increased intracellular calcium concentrations mainly deriving from the intracellular stores. Furthermore, we showed that this effect was independent of SOD1 dismutase activity and was totally inhibited by U73122, the PLC blocker. On the whole, these data indicate that SOD1 carries out a neuromodulatory role affecting calcium-dependent cellular functions.  相似文献   

7.
The opossum kidney (OK) line displays PTH-mediated activation of adenylyl cyclase and phospholipase C and inhibition of phosphate (Pi) uptake via regulation of the type IIa sodium-phosphate cotransporter, consistent with effects in vivo. OKH cells, a subclone of the OK cell line, robustly activates PTH-mediated activation of adenylyl cyclase, but is defective in PTH-mediated inhibition of sodium-phosphate cotransport and signaling via phospholipase C. Compared with wild-type OK cells, OKH cells express low levels of the Na+/H+ exchanger regulatory factor 1 (NHERF-1). Stable expression of NHERF-1 in OKH cells (OKH-N1) rescues the PTH-mediated inhibition of sodium-phosphate cotransport. NHERF-1 also restores the capacity of 8-bromo-cAMP and forskolin to inhibit Pi uptake, but the PTH dose-response for cAMP accumulation and inhibition of Pi uptake differ by 2 orders of magnitude. NHERF-1, in addition, modestly restores phorbol ester-mediated inhibition of Pi uptake, which is much weaker than that elicited by PTH. A poor correlation exists between the inhibition of Pi uptake mediated by PTH ( approximately 60%) and the inhibition mediated by phorbol 12-myristate 13-acetate ( approximately 30%) and the ability of these molecules to activate the protein kinase C-responsive reporter gene. Furthermore, we show that NHERF-1 directly interacts with type IIa cotransporter in OK cells. Although, PTH-mediated inhibition of Pi uptake in OK cells is largely NHERF-1 dependent, the signaling pathway(s) by which this occurs is still unclear. These pathways may involve cooperativity between cAMP- and protein kinase C-dependent pathways or activation/inhibition of an unrecognized NHERF-1-dependent pathway(s).  相似文献   

8.
Mihai R  Lai T  Schofield G  Farndon JR 《Cell calcium》1999,26(3-4):95-101
Parathyroid cells express a plasma membrane calcium receptor (CaR), which is stimulated by a rise in extracellular calcium concentration ([Ca2+]ext). A decreased sensitivity to [Ca2+]ext occurs in adenomatous parathyroid cells in patients with primary hyperparathyroidism, but the underlying functional mechanism is not yet fully understood. This study explored whether CaR responsiveness is influenced by increasing the affinity of IP3 receptors--a major signalling component of other G-protein-coupled receptors. The sulphydryl reagent thimerosal was used to increase the responsiveness of IP3-receptors. Quantitative fluorescence microscopy in Fura-2-loaded cells was used to investigate the effects of thimerosal on the cytoplasmic calcium concentrations ([Ca2+]i) in human parathyroid cells and to compare its effects in a rat medullary thyroid carcinoma cell line (rMTC6-23) also expressing CaR. During incubation in Ca(2+)-free medium, thimerosal 5 microM induced a rapid sustained rise in [Ca2+]i in human parathyroid cells and no further [Ca2+]i increase appeared in response to the CaR agonist Gd3+ (100 microM). Thimerosal 1 microM induced only slow and minimal changes of basal [Ca2+]i and allowed a rapid response to Gd3+ 20 nM (a concentration without effect in control cells). The slope of the thimerosal-induced [Ca2+]i responses was steeper following exposure to CaR agonists. In the presence of 1 mM [Ca2+]ext, thimerosal (0.5 microM) induced a sharp increase in [Ca2+]i to a peak (within 60 s), followed either by return to basal [Ca2+]i or by a plateau of slightly higher amplitude. Similar results were obtained using rMTC6-23 cells. Thimerosal increases the responsiveness to CaR agonists through modulation of the sensitivity of the IP3 receptor in both parathyroid and rMTC6-23 cells.  相似文献   

9.
10.
The parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor (PTH1R) belongs to family B of seven-transmembrane-spanning receptors and is activated by PTH and PTHrP. Upon PTH stimulation, the rat PTH1R becomes phosphorylated at seven serine residues. Elimination of all PTH1R phosphorylation sites results in prolonged cAMP accumulation and impaired internalization in stably transfected LLC-PK1 cells. The present study explores the role of individual PTH1R phosphorylation sites in PTH1R signaling through phospholipase C, agonist-dependent receptor internalization, and regulation by G protein-coupled receptor kinases. By means of transiently transfected COS-7 cells, we demonstrate that the phosphorylation-deficient (pd) PTH1R confers dramatically enhanced coupling to G(q/11) proteins upon PTH stimulation predominantly caused by elimination of Ser(491/492/493), Ser(501), or Ser(504). Reportedly, impaired internalization of the pd PTH1R, however, is not dependent on a specific phosphorylation site. In addition, we show that G protein-coupled receptor kinase 2 interferes with pd PTH1R signaling to G(q/11) proteins at least partially by direct binding to G(q/11) proteins.  相似文献   

11.
Bovine parathyroid hormone (PTH) 1-34 [bPTH(1-34)] and human PTH related protein [hPTHrP(1-34)] stimulated cAMP accumulation in opossum kidney (OK) cells with Km of 5 x 10(-9) M, but inhibition of phosphate uptake was obtained with 17-fold lower Km of 3 x 10(-10) M. Phosphate uptake was partially inhibited with [Nle8.18Tyr34]bPTH(3-34)NH2 without concomitant cAMP stimulation. With hPTHrP(7-34)NH2, cAMP accumulation was increased in parallel to inhibition of phosphate uptake. [D-Trp12Tyr34]bPTH(7-34)NH2 and [Tyr34]hPTH(7-34)NH2 had no agonist activity on cellular cAMP and inhibition of phosphate uptake. bPTH(1-34)-stimulated cAMP accumulation was antagonized by [Nle8.18Tyr34]bPTH(3-34)NH2, [D-Trp12Tyr34]bPTH(7-34)NH2, hPTHrP(7-34)NH2 and [Tyr34]hPTH(7-34)NH2 with Ki of 1.4 x 10(-7), 2 x 10(-7), 4.7 x 10(-7) and 3.7 x 10(-6) M, respectively. But [Nle8.18Tyr34]bPTH(3-34)NH2 and [D-Trp12Tyr34]bPTH(7-34)NH2 reversed the inhibition of phosphate uptake only marginally, and hPTHrP(7-34)NH2 and [Tyr34]hPTH(7-34)NH2 were inactive. With hPTHrP(1-34) the Ki for cAMP accumulation of [Nle8,18Tyr34]bPTH(3-34)NH2 and hPTHrP(7-34)NH2 were 1.9 x 10(-7) and 7.2 x 10(-7) M, and inhibition of phosphate uptake was partially reversed with [Nle8,18Tyr34]bPTH(3-34)NH2, but not with hPTHrP(7-34)NH2. The present results indicate that truncated hPTHrP(7-34)NH2, unlike [Tyr34]hPTH(7-34)NH2 and [D-Trp12Tyr34]bPTH(7-34)NH2, elevates cellular cAMP and inhibits phosphate uptake. bPTH(1-34)- and hPTHrP(1-34)-evoked cAMP accumulation is suppressed by PTH and PTHrP fragments while inhibition of phosphate uptake remains largely unaltered.  相似文献   

12.
Calcium compartments and fluxes were measured by kinetic analyses in kidney cell suspensions in a three-compartment closed system. The fast phase influx and compartment size increase linearly with the medium calcium and the half-time of exchange is only 1.3 min which suggests that the fast component is extracellular. The slow phase compartment rises linearly from 0.1 to 0.5 mmole calcium/kg cell water when the medium calcium is raised from 0.02 to 2.5 mM. The slow phase calcium influx exhibits the pattern of saturation kinetics with a V max of 0.065 µµmole cm-2 sec-1 and a Km of 0.3 mM indicating that it is a carrier-mediated transport process. PTH has no effect on the fast phase of calcium influx, but increases both calcium influx and the calcium pool size of the slow component. The maximum effect is obtained at medium calcium concentration of 1.3 mM. Below 0.3 mM extracellular calcium, the effects of the hormone cannot be demonstrated. PTH increases the V max of calcium influx from 0.065 to 0.128 µµmole cm-2 sec-1 while the Km rises from 0.3 to 1.15 mM. These findings suggest that PTH increases the translocation of the calcium-carrier complex across the membrane and not the carrier concentration or its binding affinity for calcium.  相似文献   

13.
14.
Na(+)-K(+)-ATPase activity in renal proximal tubule is regulated by several hormones including parathyroid hormone (PTH) and dopamine. The current experiments explore the role of Na(+)/H(+) exchanger regulatory factor 1 (NHERF-1) in dopamine-mediated regulation of Na(+)-K(+)-ATPase. We measured dopamine regulation of ouabain-sensitive (86)Rb uptake and Na(+)-K(+)-ATPase α1 subunit phosphorylation in wild-type opossum kidney (OK) (OK-WT) cells, OKH cells (NHERF-1-deficient), and OKH cells stably transfected with full-length human NHERF-1 (NF) or NHERF-1 constructs with mutated PDZ-1 (Z1) or PDZ-2 (Z2) domains. Treatment with 1 μM dopamine decreased ouabain-sensitive (86)Rb uptake, increased phosphorylation of Na(+)-K(+)-ATPase α1-subunit, and enhanced association of NHERF-1 with D1 receptor in OK-WT cells but not in OKH cells. Transfection with wild-type, full-length, or PDZ-1 domain-mutated NHERF-1 into OKH cells restored dopamine-mediated regulation of Na(+)-K(+)-ATPase and D1-like receptor association with NHERF-1. Dopamine did not regulate Na(+)-K(+)-ATPase or increase D1-like receptor association with NHERF-1 in OKH cells transfected with mutated PDZ-2 domain. Dopamine stimulated association of PKC-ζ with NHERF-1 in OK-WT and OKH cells transfected with full-length or PDZ-1 domain-mutated NHERF-1 but not in PDZ-2 domain-mutated NHERF-1-transfected OKH cells. These results suggest that NHERF-1 mediates Na(+)-K(+)-ATPase regulation by dopamine through its PDZ-2 domain.  相似文献   

15.
The amino-terminal and carboxyl-terminal portions of the 1-34 fragment of parathyroid hormone (PTH) contain the major determinants of receptor activation and receptor binding, respectively. We investigated how the amino-terminal signaling portion of PTH interacts with the receptor by utilizing analogs of the weakly active fragment, rat (r) PTH(1-14)NH(2), and cells transfected with the wild-type human PTH-1 receptor (hP1R-WT) or a truncated PTH-1 receptor which lacked most of the amino-terminal extracellular domain (hP1R-delNt). Of 132 mono-substituted PTH(1-14) analogs, most having substitutions in the (1-9) region were inactive in assays of cAMP formation in LLC-PK1 cells stably expressing hP1R-WT, whereas most having substitutions in the (10-14) region were active. Several substitutions (e.g. Ser(3) --> Ala, Asn(10) --> Ala or Gln, Leu(11) --> Arg, Gly(12) --> Ala, His(14) --> Trp) enhanced activity 2-10-fold. These effects were additive, as [Ala(3),(10,12),Arg(11), Trp(14)] rPTH(1-14)NH(2) was 220-fold more potent than rPTH(1-14)NH(2) (EC(50) = 0.6 +/- 0.1 and 133 +/- 16 micrometer, respectively). Native rPTH(1-11) was inactive, but [Ala(3,10), Arg(11)]rPTH(1-11)NH(2) achieved maximal cAMP stimulation (EC(50) = 17 micrometer). The modified PTH fragments induced cAMP formation with hP1R-delNt in COS-7 cells as potently as they did with hP1R-WT; PTH(1-34) was 6,000-fold weaker with hP1R-delNt than with hP1R-WT. The most potent analog, [Ala(3,10,12),Arg(11), Trp(14)]rPTH(1-14)NH(2), stimulated inositol phosphate production with hP1R-WT. The results show that short NH(2)-terminal peptides of PTH can be optimized for considerable gains in signaling potency through modification of interactions involving the regions of the receptor containing the transmembrane domains and extracellular loops.  相似文献   

16.
17.
The present experiments using primary cultures of renal proximal tubule cells derived from wild-type and NHERF-1 knockout animals examines the regulation of NHE3 by phenylthiohydantoin (PTH) and the regulation of phosphate transport in response to alterations in the media content of phosphate. Forskolin (34.8 +/- 6.2%) and PTH (29.7 +/- 1.8%) inhibited NHE3 activity in wild-type proximal tubule cells but neither forskolin (-3.2 +/- 3.3%) nor PTH (-16.6 +/- 8.1%) inhibited NHE3 activity in NHERF-1(-/-) cells. Using adenovirus-mediated gene transfer, expression of NHERF-1 in NHERF-1(-/-) proximal tubule cells restored the inhibitory response to forskolin (28.2 +/- 3.0%) and PTH (33.2 +/- 3.9%). Compared with high phosphate media, incubation of wild-type cells in low phosphate media resulted in a 36.0 +/- 6.3% higher rate of sodium-dependent phosphate transport and a significant increase in the abundance of Npt2a and PDZK1. NHERF-1(-/-) cells, on the other hand, had lower rates of sodium-dependent phosphate uptake and low phosphate media did not stimulate phosphate transport. Npt2a expression was not affected by the phosphate content of the media in NHERF-1 null cells although low phosphate media up-regulated PDZK1 abundance. Primary cultures of mice proximal tubule cells retain selected regulatory pathways observed in intact kidneys. NHERF-1(-/-) proximal tubule cells demonstrate defective regulation of NHE3 by PTH and indicate that reintroduction of NHERF-1 repairs this defect. NHERF-1(-/-) cells also do not adapt to alterations in the phosphate content of the media indicating that the defect resides within the cells of the proximal tubule and is not dependent on systemic factors.  相似文献   

18.
The effect of parathyroid hormone (PTH) on Ca2+ uptake was studied in brush-border membrane vesicles (BBMV) prepared from the kidneys of dogs administered 4-5 micrograms/kg of bovine PTH 1-84 in vivo. PTH stimulated Ca2+ uptake at 20 s of incubation from control values of 231 +/- 21 to 306 +/- 30 pmol/mg of protein, p less than 0.001. The stimulation of Ca2+ uptake by PTH was not reversed by incubation of the BBMV with the Ca2+ ionophore, despite the fact that Ca2+ uptake was several times greater than the expected uptake at equilibrium, indicating that most of the uptake represented Ca2+ binding to the BBMV. In BBMV from kidneys exposed to PTH, hypotonic lysis or increasing the osmolality of the solution external to the BBMV did not affect Ca2+ uptake. These data also indicated that the largest fraction of Ca2+ uptake in the presence of a chemical potential represented binding of Ca2+ to BBMV. Ca2+ binding was initially to the exterior of the BBMV, then translocated within the membrane and to the interior vesicular face as assessed by chelation of Ca2+ bound to the BBMV by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Incubation of BBMV from kidneys exposed to PTH with gentamicin, which competes with Ca2+ for anionic phospholipid-binding sites, reversed the stimulatory effects of PTH on Ca2+ uptake. Phosphorylation of BBMV and PTH treatment in vivo had similar effects on BBMV phospholipid composition increasing the levels of anionic phospholipids. Phosphorylation of the BBMV also produced gentamicin-inhibitable increases in membrane Ca2+ binding. Phosphorylation of BBMV from kidneys exposed to PTH was inhibited suggesting a higher state of phosphorylation in vivo. The data demonstrate that PTH administered in vivo stimulated Ca2+ binding in BBMV that was gentamicin inhibitable and associated with an increase in the membrane content of anionic phospholipids.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号