首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Dendritic cells (DCs) are antigen-presenting cells (APCs) capable of capturing haptens and to process and present them to T lymphocytes. In order to sensitize T cells for contact hypersensitivity (CHS), skin DCs suffer a maturation process with modifications on their surface molecules. The aim of this work was to evaluate changes induced by two contact sensitizers, 2,4-dinitrofluorobenzene (DNFB) and nickel sulfate (NiSO4), and a non-sensitizer 2,4-dichloronitrobenzene (DCNB), on the protein levels of two activation markers, CD40 and IL-12 receptor (IL-12R), in a mouse skin dendritic cell line (FSDC). The expression of CD40 and IL-12R proteins was evaluated by western blot assay and direct immunofluorescence microscopy. The results showed that CD40 and IL-12R expression increased significantly after cell exposure to NiSO4 and DNFB, although DNFB exhibited a stronger activity. There was no effect with DCNB. The epidermal cytokine granulocyte–macrophage colony-stimulating factor (GM-CSF), also used in the experiments, slightly increased the expression of both CD40 and IL-12R and when tested together with the sensitizers the effect was partially additive. The results suggest that the sensitizers DNFB and NiSO4 are directly involved on the changes of the surface markers CD40 and IL-12R in skin DCs, during the sensitization phase of CHS, and this effect may be enhanced by GM-CSF. In contrast, no effect was observed with DCNB.  相似文献   

2.
UVB irradiation (290-320 nm) and topical applications of arachidonic acid (AA) in mice decrease the number of identifiable Langerhans cells and alter the cutaneous immune response. Application of contact allergens such as dinitrofluorobenzene (DNFB) to irradiated or AA-treated skin induces antigen-specific tolerance. Indomethacin (IM), a cyclooxygenase inhibitor, administered orally to mice prior to UVB irradiation or prior to the topical application of arachidonic acid, abrogates suppression of contact hypersensitivity (CHS) to DNFB. This suggests a byproduct of arachidonic acid generated through the cyclooxygenase pathway may be involved in the immune suppression. Topical application of various prostaglandins (PGE2, PGD2, PGF2 alpha, and CTXA2) did not cause alterations in the population density of the identifiable Ia+ dendritic Langerhans cells. PGE2, but no other tested agent, produced a suppression of the CHS response to DNFB. These observations suggests that of the various prostaglandins, PGE2 might be one of several biochemical signals which mediate the suppression of contact hypersensitivity reactions following ultraviolet radiation exposure. However, the mechanisms by which PGE2 produces its suppressive effects have not been identified.  相似文献   

3.
Capsaicin, a neurotoxin that depletes primary sensory neurons (polymodal nociceptors) of neuropeptides, was used to explore the role of such neurons on the expression of delayed-type hypersensitivity reactions in mice. BALB/c mice received s.c. injections with capsaicin (100 mg/kg) and tested 1 to 2 wk later exhibited insensitivity to chemically induced irritation (greater than 80% reduction in the eye-wiping response for more than 15 wk) as well as loss (greater than 95% reduction) of the ear swelling response to topical capsaicin. Early (less than or equal to 4 h) ear swelling to topical DNFB and oxazolone was also markedly reduced by capsaicin pretreatment, suggesting neurogenic inflammation as a major component of the early irritant reaction to haptens. In contrast, capsaicin-pretreated mice exhibited enhanced contact sensitivity (CS) reactions to oxazolone (greater than 90%) and DNFB (greater than 50%) and enhanced delayed-type hypersensitivity reactions to SRBC (greater than 20%). Adoptive transfer experiments revealed that CS augmentation was not due to generation of increased numbers and/or activity of effector T cells. Histologic studies as well as experiments measuring migration of 51Cr-labeled, Ag-nonspecific cells showed increased edema and enhanced cell localization in CS elicitation sites in capsaicin-pretreated mice. These results indicate that peptidergic neurons, via neuropeptide release, regulate the expression of T cell-mediated, delayed-in-time, cutaneous inflammatory reactions. The net effect of these neurons on the late (cellular) phase of such responses seems to be suppressive, because their impairment results in augmented reactions.  相似文献   

4.
Several studies have suggested a possible role for IgE antibodies in the pathogenesis of cutaneous hypersensitivity reactions that reach maximum intensity 24 to 48 hr after antigen challenge. The recent availability of murine monoclonal IgE anti-hapten antibodies has made possible the direct examination of the range of cutaneous inflammatory reactions that can be mediated by such antibodies. We have examined the effects of passively sensitizing BALB/c mice with monoclonal IgE anti-dinitrophenyl (DNP) antibody 48 hr before antigen challenge. Inflammatory responses were assessed by measuring ear swelling in mice challenged on the ears with the reactive hapten 2,4-dinitrofluorobenzene (DNFB). Compared with unsensitized controls, the ears of mice passively sensitized with IgE anti-DNP displayed a biphasic pattern of ear swelling after DNFB challenge. An early, transient response (present within 15 to 30 min of challenge and returning to control levels within 4 to 9 hr) was followed by a second, more persistent increase in ear swelling that peaked 24 to 48 hr after challenge. This biphasic pattern of ear swelling seen in IgE-sensitized mice was temporally indistinguishable from that observed in mice conventionally sensitized for allergic contact dermatitis reactions by epicutaneous application of DNFB 5 days before DNFB ear challenge. Antigen specificity of the IgE-mediated contact hypersensitivity reactions was demonstrated by the failure of mice passively sensitized with IgE anti-DNP to display early or delayed ear swelling greater than unsensitized controls when challenged with either of two noncross-reacting haptens, fluorescein isothiocyanate or oxazolone. Mice passively sensitized with a monoclonal IgA anti-DNP antibody (MOPC 315) 48 hr before DNFB challenge failed to display early or delayed ear swelling greater than unsensitized controls. Heat inactivation of the IgE anti-DNP ascitic fluid at 56 degrees C for 30 min completely abolished its capacity to passively sensitize mice for contact hypersensitivity reactions after DNFB challenge. These results document the existence of an antigen-specific, IgE-mediated, delayed-in-time cutaneous hypersensitivity response that can be elicited by epicutaneous challenge (contract) with a reactive hapten.  相似文献   

5.
The optimal conditions for the induction of contact hypersensitivity in rats and the characteristics of its suppression were studied using the sensitizing haptens dinitrofluorobenzene (DNFB) and trinitrochlorobenzene (TNCB). The hypersensitivity was shown to be hapten specific in so far as TNCB did not sensitize for DNFB responses but sensitization with DNFB did allow a marginal response in rats challenged with TNCB. Suppression of the sensitization to DNFB and TNCB could be generated by intravenous injection of dinitrobenzenesulphonic acid (DNBS) or trinitrobenzenesulphonic acid (TNBS), respectively, up to 3 weeks before sensitization. This suppression was hapten specific and could be transferred with splenic T cells enriched for lymphocytes carrying the OX8 (Tc/s) cell marker. Only the induction phase of sensitization, however, could be suppressed in that way. No suppression acting upon the effector phase could be detected except for a nonspecific local suppression at the site of a previous challenge with an antigen to which the rat was specifically suppressed. This study shows that suppression of contact hypersensitivity in rats is mediated by specific suppressor T cells of which the activation pathway apparently differs from that postulated for mice.  相似文献   

6.
The shift of suppression from a tolerizing hapten to a so-called bystander antigen was investigated in this study using contact hypersensitivity to trinitrochlorobenzene (TNCB) and dinitrofluorobenzene (DNFB) and delayed type hypersensitivity (DTH) to alloantigens in the rats as experimental models. Primary suppression of contact hypersensitivity was induced by intravenous injection of the water-soluble forms of TNCB and DNFB. A shift of the suppression to the bystander hapten was found if the tolerizing and bystander hapten were mixed and applied to the same area of skin during the sensitization procedure, but not if they were applied to separate areas of skin. With alloantigens, bystander suppression developed only when the sensitizing allogeneic cells were mixed with hapten-modified syngeneic cells. It was not induced by hapten-modified allogeneic cells. Once induced, such bystander suppression of the response to haptens persisted independently of the primarily tolerizing hapten, and it could be adoptively transferred with spleen cells. These results favour the concept that the bystander suppression is mediated by the non-specific action of suppressor cells generated specifically during the mixed sensitization rather than by an antigen bridge.  相似文献   

7.
The characteristics of suppressor cells induced by 2,4-dinitrophenyl (DNP)-coupled syngeneic lymphocytes (syninduced suppressor cells) were studied. 2,4-dinitro-1-fluorobenzene (DNFB) contact hypersensitivity was completely suppressed when the syninduced suppressor cells were transferred intravenously. These syninduced suppressor cells had surface markers of Thy-1, FcR? and Lyt-2+, 3+ antigens, as well as I-J gene products on their cell surfaces. The suppression of DNFB contact hypersensitivity was abrogated when these suppressor T cells were incubated in Petri dishes coated with the DNP-syngeneic lymphoid cell membrane, which suggests that these suppressor T cells had the specific antigen-binding receptors on their cell surfaces.  相似文献   

8.
The primary effector cells of contact hypersensitivity (CHS) responses to dintrofluorobenzene (DNFB) are IFN-gamma-producing CD8(+) T cells, whereas CD4(+) T cells regulate the magnitude and duration of the response. The requirement for CD40-CD154 engagement during CD8(+) and CD4(+) T cell priming by hapten-presenting Langerhans cells (hpLC) is undefined and was tested in the current study. Similar CHS responses to DNFB were elicited in wild-type and CD154(-/-) animals. DNFB sensitization of CD154(-/-) mice primed IFN-gamma-producing CD8(+) T cells and IL-4-producing CD4(+) T cells. However, anti-CD154 mAb MR1 given during hapten sensitization inhibited hapten-specific CD8(+), but not CD4(+), T cell development and the CHS response to challenge. F(ab')(2) of MR1 failed to inhibit CD8(+) T cell development and the CHS response suggesting that the mechanism of inhibition is distinct from that of CD40-CD154 blockade. Furthermore, anti-CD154 mAb did not inhibit CD8(+) T cell development and CHS responses in mice depleted of CD4(+) T cells or in CD4(-/-) mice. During in vitro proliferation assays, hpLC from mice treated with anti-CD154 mAb during DNFB sensitization were less stimulatory for hapten-primed T cells than hpLC from either control mice or mice depleted of CD4(+) T cells before anti-CD154 mAb administration. These results demonstrate that development of IFN-gamma-producing CD8(+) T cells and the CHS response are not dependent on CD40-CD154 interactions. This study proposes a novel mechanism of anti-CD154 mAb-mediated inhibition of CD8(+) T cell development where anti-CD154 mAb acts indirectly through CD4(+) T cells to impair the ability of hpLC to prime CD8(+) T cells.  相似文献   

9.
Langerhans cells (LCs) serve as epidermal sentinels of the adaptive immune system. Conventional wisdom suggests that LCs encounter Ag in the skin and then migrate to the draining lymph nodes, where the Ag is presented to T cells, thus initiating an immune response. Platelet-activating factor (PAF) is a phospholipid mediator with potent biological effects. During inflammation, PAF mediates recruitment of leukocytes to inflammatory sites. We herein tested a hypothesis that PAF induces LC migration. Applying 2,4-dinitro-1-fluorobenzene (DNFB) to wild-type mice activated LC migration. In contrast, applying DNFB to PAF receptor-deficient mice or mice injected with PAF receptor antagonists failed to induce LC migration. Moreover, after FITC application the appearance of hapten-laden LCs (FITC+, CD11c+, Langerin+) in the lymph nodes of PAF receptor-deficient mice was significantly depressed compared with that found in wild-type mice. LC chimerism indicates that the PAF receptor on keratinocytes but not LCs is responsible for LC migration. Contrary to the diminution of LC migration in PAF receptor-deficient mice, we did not observe any difference in the migration of hapten-laden dermal dendritic cells (FITC+, CD11c+, Langerin-) into the lymph nodes of PAF receptor-deficient mice. Additionally, the contact hypersensitivity response generated in wild-type or PAF receptor-deficient mice was identical. Finally, dermal dendritic cells, but not LCs isolated from the draining lymph nodes after hapten application, activated T cell proliferation. These findings suggest that LC migration may not be responsible for the generation of contact hypersensitivity and that dermal dendritic cells may play a more important role.  相似文献   

10.
The present study was designed to elucidate the role of p38 mitogen-activated protein kinase (p38) in the pathogenesis of inflammation, using a mouse contact hypersensitivity (CHS) model induced by 2,4-dinitro-1-fluorobenzene (DNFB). Ear swelling was induced by challenge with DNFB, accompanied by infiltration of mononuclear cells, neutrophils, and eosinophils and a marked increase in mRNA levels of cytokines such as interleukin (IL)-2, interferon (IFN)-gamma, IL-4, IL-5, IL-1beta, IL-18, and tumor necrosis factor-alpha in the challenged ear skin. Both ear swelling and the number of infiltrated cells in DNFB-challenged ear skin were significantly inhibited by treatment with SB202190, a p38 inhibitor. Furthermore, the DNFB-induced expression of all cytokines except IL-4 was significantly inhibited by treatment with SB202190. Ribonuclease protection assay revealed that the mRNA levels of chemokines such as IP-10 and MCP-1 in ear skin were markedly increased at 24 h after challenge with DNFB. The induction of these chemokines was significantly inhibited by treatment with SB202190. In p38alpha +/- mice, both ear swelling and infiltration of cells induced by DNFB were reduced compared with those in wild-type mice. However, induction of cytokines by DNFB was also observed in p38alpha +/- mice, although the induction of IFN-gamma, IL-5, and IL-18 was typically reduced compared with that in wild-type mice. Challenge with DNFB slightly induced IP-10 and MCP-1 mRNA in p38alpha +/- mice, with weaker signals than those in SB202190-treated wild-type mice. These results suggest that p38 plays a key role in CHS and is an important target for the treatment of CHS.  相似文献   

11.
We have explored the effect of photodynamic therapy (PDT) with verteporfin on the induction and expression of contact hypersensitivity (CHS) to 2,4-dinitrofluorobenzene (DNFB) in normal mice and IL-10-deficient mice. Our results indicate that DNFB sensitized mice given PDT with verteporfin and whole body red light irradiation exhibited a significant reduction in CHS compared with control animals. Administration of rIL-12 reversed the effect(s) of PDT as did treatment of mice with anti-IL-10-neutralizing Ab. Knockout mice deficient in IL-10 were found to be resistant to the inhibitory effects of PDT. In vitro proliferative responses using spleen cells from DNFB-sensitized and PDT-treated mice showed a significantly lower response to DNBS as compared with cells from DNFB-sensitized mice or DNFB and PDT-treated IL-10-deficient mice. Finally, naive mice exposed to PDT exhibited an increase in skin IL-10 levels, which peaked between 72 and 120 h post-PDT. Together these data support the role of IL-10 as a key modulator in the inhibition of the CHS response by whole body PDT.  相似文献   

12.
The intracellular mechanisms involved in the early phase of dendritic cell (DC) activation upon contact with chemical sensitizers are not well known. The strong skin sensitizer 2,4-dinitrofluorobenzene (DNFB) was shown to induce the activation of mitogen-activated protein kinases (MAPK) in DC. In the present study, we investigated a putative role for oxidative stress in DNFB-induced MAPK activation and upregulation of the costimulatory molecule CD40. In a DC line generated from fetal mouse skin, DNFB induced a significant increase in protein oxidation, measured by the formation of carbonyl groups, while it had almost no effect on lipid peroxidation. The antioxidants glutathione and vitamin E, which inhibit protein and lipid oxidation, respectively, were used to assess the role of oxidative stress in DNFB-induced MAPK activation. Glutathione, but not vitamin E, inhibited DNFB-induced p38 MAPK and ERK1/2 phosphorylation, whereas none of the antioxidants interfered significantly with the DNFB-induced upregulation of CD40 protein levels. Taken together, these results indicate that DNFB activates p38 MAPK and ERK1/2 via production of reactive oxygen species, and that protein oxidation plays an important role in MAPK activation.  相似文献   

13.
We evaluated the effect of carotenoids on the dinitrofluorobenzene (DNFB)-induced contact hypersensitivity in mice. Dietary carotenoids significantly inhibited ear swelling and reduced the contents of TNF-α and histamine in the DNFB-treated mice. Our results suggest that dietary carotenoids exerted an anti-inflammatory effect by suppressing mast cell degranulation in vivo.  相似文献   

14.
The genetic basis of the effects of ultraviolet B(UVB) radiation on the induction of contact hypersensitivity (CH) to dinitrofluorobenzene (DNFB) has been explored in genetically defined mice. It was found that acute, low-dose UVB radiation produced profound depletion of epidermal Langerhans cells (LC) at UVB-treated sites in all strains of mice tested. However, when DNFB was applied to UVB radiation sites, unresponsiveness developed in some strains of mice, but vigorous contact hypersensitivity was induced in others. The UVB-susceptible phenotype proved dominant or codominant in F1 hybrids derived from parental strains of the susceptible and UVB-resistant phenotypes. Experiments conducted in one set of F1 hybrids derived from two UVB-susceptible parental strains displayed UVB resistance, suggesting gene complementation, and showed that more than one genetic locus was involved. Segregant backcross populations, analyzed for the capacity to develop CH after UVB treatment and skin painting with DNFB, revealed that at least two, and probably three, independent genetic loci participate in determining UVB resistance. Results of experiments with H-2 congenic and recombinant mice derived from the B10 background implicated class I genes of the major histocompatibility complex as relevant genetic factors. These results indicate that there is a dissociation between the effects of UVB radiation on epidermal Langerhans cells and the capacity of a cutaneous surface to support the induction of contact hypersensitivity. The data indicate that the induction of CH to haptens is dependent on normal numbers of functional LC at the skin painting site only in some strains of mice. The data imply that in the so-called UVB-resistant strains of mice, alternative (non-Langerhans cell-dependent) mechanisms allow for the induction of CH. Several independent genetic loci, one of which appears to be H-2, govern this UVB-related effect.  相似文献   

15.
This work was designed to assess the pharmacological effectiveness as a novel anti-atopic dermatitis remedy of a phopholipid mixture purified from pig lung tissues, named KT&G101, using the BALB/c mouse model of allergic contact dermatitis. Allergic contact dermatitis was induced by applying 2,4-dinitrofluorobenzene (DNFB) epicutaneously onto the dorsal skins of mice, and KT&G101 was topically applied onto the skin areas with the lesions. The topical application of KT&G101 (0.05 ml of 10 mg/ml and 20 mg/ml KT&G101, twice a day for 15 days) decreased the total IgE level elevated in the sera of mice undergoing allergic contact dermatitis. KT&G101 was also able to decrease the 2,4-dinitrophenyl (DNP)-specific IgE level elevated in the sera of the model mice. It reduced the incidences of scratching behaviors in the mice undergoing DNFB-induced allergic contact dermatitis. It attenuated some histopathological changes, such as pustule, epidermal hyperplasia, dermatitis and fibroplasia, while it could enhance the recovery of epidermis, in the damaged skin tissues within a relatively short period after the topical application of KT&G101. KT&G101 lessened the expression of cytokines mRNAs, such as Th1-specific IL-2, TNF-β and IFN-γ, and Th2-specific IL-4, in the mouse skin tissues showing the lesions. In brief, it is concluded that KT&G101 alleviates the symptoms involved in induced allergic contact dermatitis in BALB/c mice.  相似文献   

16.
A murine model of delayed-type hypersensitivity (DTH) is characterized with respect to liposome accumulation at a site of inflammation. Mice were sensitized by painting the abdominal region with a solution of 2,4-dinitrofluorobenzene (DNFB) and inflammation was induced 5 days later by challenging the ear with a dilute solution of DNFB. The inflammatory response was readily monitored by measuring ear thickness (edema) and radiolabeled leukocyte infiltration. Maximum ear swelling and cellular infiltration occurred 24 h after the epicutaneous challenge with the ear returning to normal size after approximately 72 h. We demonstrate that large unilamellar vesicles (LUV) accumulate at the site of inflammation to a level more than 20-fold higher than that measured in the untreated ear. Vesicle delivery to the ear correlated with increased vascular leakage resulting from endothelium remodeling in response to DNFB challenge, and was not a consequence of increased local tissue blood volume. Extravasation occurred only during the first 24 h after ear challenge; after this time the permeability of the endothelium to vesicles returned to normal. We further showed that LUV with a diameter of 120 nm exhibit maximum levels of accumulation, that a polyethylene glycol surface coating does not increase delivery, and that the process can be inhibited by the application of topical corticosteroids at the time of induction. These data and the inflammation model are discussed with respect to developing lipid-based drug delivery vehicles designed to accumulate at inflammatory disease sites.  相似文献   

17.
18.
In seasonal mammals, photoperiod change is associated with a suite of alterations in physiology. It has recently been proposed that the immune response is one of the systems regulated by changes in photoperiod, although this hypothesis has not been rigorously challenged by assays of functional immune responses. The aim of this study was to test the hypothesis that photoperiod modulates immune responsiveness in Syrian (Mesocricetus auratus) and Siberian (Phodopus sungorus) hamsters. Consistent with previously reported data, short-day-housed (SD) animals exhibited a significant increase in lymph node cell (LNC) numbers and increased cellular proliferation in response to the polyclonal mitogen concanavalin A compared to long-day-housed (LD) animals. In contrast, LNC numbers from intact or gonadectomized SD animals that had been sensitized with the antigen dinitrofluorobenzene (DNFB) exhibited a reduced ex vivo proliferative response and reduced production of interleukin-6 (IL-6) compared to LD animals. In vivo studies of the contact hypersensitivity response of animals that had previously been sensitized, and subsequently challenged, with DNFB were similar in SD and LD animals, as was the proliferative activity of LNC recovered from these animals. There were also no photoperiodic differences in the antidinitrophenyl antibody response of animals sensitized with DNFB, or the anti-sheep red blood cell (srbc) response of animals immunized with srbc. Furthermore, no differences could be detected in the activity of natural killer cells from spleens of LD and SD Siberian hamsters, or in lipopolysaccharide-induced IL-6 production by LD and SD Syrian hamsters in vivo. Thus, although photoperiod is able to influence factors regulating the gross number and non-antigen-specific proliferation of lymphocytes in seasonally breeding mammals, day length does not directly influence activation of an effective immune response. The authors conclude, therefore, that expression of the immune response is not directly modified or compromised by photoperiod in these seasonally breeding hamster species.  相似文献   

19.
Tolerance in contact sensitivity to DNFB can be adoptively transferred to normal mice with lymph node cells from tolerant donors. This tolerance is antigen specific and is mediated by T cells, i.e., "suppressor" T cells. Experiments were carried out to investigate the mechanism(s) by which the suppressor T cells induce tolerance to DNFB contact sensitivity. The suppressor cells were effective only if they were present during the early stages of the afferent limb of sensitization. As measured by DNA synthesis, cell proliferation in the draining lymph nodes of recipients of suppressor cells was found to be significantly less than in control animals indicating that the suppressor cells acted, at least in part, by limiting or inhibiting DNFB-induced cell proliferation. This inhibition was shown to be antigen specific since the DNFB suppressor cells did not inhibit cell proliferation induced by oxazolone, an unrelated contact sensitizer. The ability to DNFB tolerant cells to block afferent sensitization pathways differs from the mechanism of tolerance to picryl chloride, reported by others, where efferent pathways are blocked.  相似文献   

20.
This study investigated the recruitment of polymorphonuclear leukocytes (PMNs) and the immunolocalization of CXC chemokines, including macrophage inflammatory protein-2 (MIP-2) and cytokine-induced neutrophil chemoattractant-2 (CINC-2) in rat periodontal tissue after topical application of lipopolysaccharide (LPS; 5 mg/ml) from Escherichia coli into the rat molar gingival sulcus. In normal periodontal tissues, a small number of MIP-2- and CINC-2-positive cells were seen in junctional epithelium (JE), especially in its coronal half. After topical application of LPS, a prominent increase of MIP-2- and CINC-2-positive JE cells was observed. Almost all JE cells strongly expressed them at day 1 and day 2, and then the number of chemokine-positive cells returned to normal at day 7. Corresponding to these chemokine expressions, LPS application induced a significant increase in the number of PMNs in the sub-JE area from 1 h to 2 days and a significant increase in JE area from 3 h to 5 days, indicating a dynamic flow of PMNs from the sub-JE area into JE. These findings indicated that JE cells produced MIP-2 and CINC-2 in response to LPS stimulation and suggested that MIP-2 and CINC-2 may be responsible for PMN migration toward the periodontal pathogen and may play an important role in the initiation of inflammation and subsequent periodontal tissue destruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号