首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila raf (D-raf) gene promoter contains a recognition consensus sequence for Drosophila STAT (D-STAT). By band mobility shift assay, we detected a factor binding to the D-STAT-recognition sequence in extracts of cultured Drosophila cells treated with vanadate peroxide. UV-cross-linking analyses suggested the size of the binding factor to be almost same as that of D-STAT. Furthermore, the binding activity was increased in cells cotransfected with HOP and D-STAT expression plasmids. These results strongly suggest that D-STAT binds to the D-STAT recognition sequence in the D-raf gene promoter. Transient luciferase expression assay using Schneider 2 cells indicated that the D-raf gene promoter is activated by D-STAT through the D-STAT-binding site. Furthermore, analyses with transgenic flies carrying Draf-lacZ fusion genes with and without mutations in the D-STAT-binding site pointed to an important role in D-raf gene promoter activity throughout development. We also found that the D-STAT-binding site is required for injury-induced activation of the D-raf gene promoter. Here we propose that D-STAT can participate in regulation of the mitogen-activated protein kinase cascade through D-raf gene activation.  相似文献   

2.
During the immune response, striking the right balance between positive and negative regulation is critical to effectively mount an anti-microbial defense while preventing detrimental effects from exacerbated immune activation. Intra-cellular immune signaling is tightly regulated by various post-translational modifications, which allow for this dynamic response. One of the post-translational modifiers critical for immune control is ubiquitin, which can be covalently conjugated to lysines in target molecules, thereby altering their functional properties. This is achieved in a process involving E3 ligases which determine ubiquitination target specificity.One of the most prominent E3 ligase families is that of the tripartite motif (TRIM) proteins, which counts over 70 members in humans. Over the last years, various studies have contributed to the notion that many members of this protein family are important immune regulators. Recent studies into the mechanisms by which some of the TRIMs regulate the innate immune system have uncovered important immune regulatory roles of both covalently attached, as well as unanchored poly-ubiquitin chains. This review highlights TRIM evolution, recent findings in TRIM-mediated immune regulation, and provides an outlook to current research hurdles and future directions.  相似文献   

3.
4.
Proteomics of the Drosophila immune response   总被引:2,自引:0,他引:2  
  相似文献   

5.
6.
7.
Ubiquitylation is a fundamental mechanism of signal transduction that regulates immune responses and many other biological processes. Similar to phosphorylation, ubiquitylation is a reversible process that is counter-regulated by ubiquitylating enzymes and deubiquitylating enzymes (DUBs). Despite the identification of a large number of DUBs, our knowledge of the function and activities of this family of enzymes is just starting to accumulate. As described in this Review, recent studies of several DUBs, in particular CYLD and A20, show that deubiquitylation has an important role in the regulation of both innate and adaptive immune responses.  相似文献   

8.
9.
10.
11.
12.
13.
There is now a wealth of evidence that some of the most important regions of the genome are found outside those that encode proteins, and noncoding regions of the genome have been shown to be subject to substantial levels of selective constraint, particularly in Drosophila. Recent work has suggested that these regions may also have been subject to the action of positive selection, with large fractions of noncoding divergence having been driven to fixation by adaptive evolution. However, this work has focused on Drosophila melanogaster, which is thought to have experienced a reduction in effective population size (N(e)), and thus a reduction in the efficacy of selection, compared with its closest relative Drosophila simulans. Here, we examine patterns of evolution at several classes of noncoding DNA in D. simulans and find that all noncoding DNA is subject to the action of negative selection, indicated by reduced levels of polymorphism and divergence and a skew in the frequency spectrum toward rare variants. We find that the signature of negative selection on noncoding DNA and nonsynonymous sites is obscured to some extent by purifying selection acting on preferred to unpreferred synonymous codon mutations. We investigate the extent to which divergence in noncoding DNA is inferred to be the product of positive selection and to what extent these inferences depend on selection on synonymous sites and demography. Based on patterns of polymorphism and divergence for different classes of synonymous substitution, we find the divergence excess inferred in noncoding DNA and nonsynonymous sites in the D. simulans lineage difficult to reconcile with demographic explanations.  相似文献   

14.
15.
16.
Cannabinoid research underwent a tremendous increase during the last 10 years. This progress was made possible by the discovery of cannabinoid receptors and the endogenous ligands for these receptors. Cannabinoid research is developing in two major directions: neurobehavioral properties of cannabinoids and the impact of cannabinoids on the immune system. Recent studies characterized the cannabinoid-induced response as a very complex process because of the involvement of multiple signalling pathways linked to cannabinoid receptors or effects elicited by cannabinoids without receptor participation. The objective of this review is to present this complexity as it applies to immune response. The functional properties of cannabinoid receptors, signalling pathways linked to cannabinoid receptors and the modulation of immune response by cannabinoid receptor ligands are discussed. Special attention is given to 'endocannabinoids' as immunomodulatory molecules.  相似文献   

17.
18.
Adaptor proteins, molecules that mediate intermolecular interactions, are now known to be as crucial for lymphocyte activation as are receptors and effectors. Extensive work from numerous laboratories has identified and characterized many of these adaptors, demonstrating their roles as both positive and negative regulators. Studies into the molecular basis for the actions of these molecules shows that they function in various ways, including: recruitment of positive or negative regulators into signalling networks, modulation of effector function by allosteric regulation of enzymatic activity, and by targeting other proteins for degradation. This review will focus on a number of adaptors that are important for lymphocyte function and emphasize the various ways in which these proteins carry out their essential roles.  相似文献   

19.
DNA replication blockage in various differentiated cells was investigated on the model of heterokaryons. Two distinct types of DNA synthesis regulation in heterokaryons "differentiated cell + proliferating cell" were revealed: I. Neutrophils and nucleated erythrocytes efficiently prevented the entry of non-malignant proliferating cells nuclei into the S-period but usually failed to substantially inhibit the replication in malignant cells nuclei. Both "mortal" and immortalized proliferating cells activated the DNA synthesis in neutrophil and chicken erythrocyte nuclei. II. Macrophages did not influence the DNA synthesis in the nuclei of non-malignant cells in heterokaryons but drastically inhibited that in the nuclei of malignant cells. Only immortalized cells reactivated DNA synthesis in the nuclei of macrophages. These data show that the mechanisms maintaining differentiated cells in non-proliferating state are not uniform. Nucleated erythrocytes were shown to suppress the duplication of centrioles in partner cells. The possibility of the blockage of DNA replication upon the fusion of two proliferating cells (fibroblast + leukemia cell) was demonstrated for the first time in the present work. The influence of various oncogenes upon the regulation of DNA synthesis in heterokaryons was investigated in detail. New modifications of the methods of cell fusion, enucleation and heterokaryon identification were proposed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号