首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have suggested that neuronal death in Alzheimer's disease or ischemia could arise from dysfunction of the endoplasmic reticulum (ER). Although caspase-12 has been implicated in ER stress-induced apoptosis and amyloid-beta (Abeta)-induced apoptosis in rodents, it is controversial whether similar mechanisms operate in humans. We found that human caspase-4, a member of caspase-1 subfamily that includes caspase-12, is localized to the ER membrane, and is cleaved when cells are treated with ER stress-inducing reagents, but not with other apoptotic reagents. Cleavage of caspase-4 is not affected by overexpression of Bcl-2, which prevents signal transduction on the mitochondria, suggesting that caspase-4 is primarily activated in ER stress-induced apoptosis. Furthermore, a reduction of caspase-4 expression by small interfering RNA decreases ER stress-induced apoptosis in some cell lines, but not other ER stress-independent apoptosis. Caspase-4 is also cleaved by administration of Abeta, and Abeta-induced apoptosis is reduced by small interfering RNAs to caspase-4. Thus, caspase-4 can function as an ER stress-specific caspase in humans, and may be involved in pathogenesis of Alzheimer's disease.  相似文献   

2.
Our previous studies revealed that Docetaxel-induced apoptosis of melanoma cells is entirely dependent on activation of the JNK signalling pathway. Here, we show that Docetaxel-induced apoptosis is mediated by induction of ER stress. This was shown by Docetaxel-induced activation of proteins involved in ER stress signalling namely GRP78, ATF6, IRE1α, and PERK/eIF2α. Knockdown of IRE1α by siRNA markedly inhibited Docetaxel-induced JNK activation and downstream targets of JNK indicating that activation of IRE1α was upstream of activation of the JNK. Co-immunoprecipitation experiments showed that activation of JNK is due to activation of ASK1 through formation of an IRE1α-TRAF2-ASK1 complex. ER stress mediated activation of the JNK pathway is downstream of activation of PKCδ in that downregulation of PKCδ expression using specific PKCδ siRNA significantly inhibited Docetaxel-induced activation of IRE1α and the JNK pathway. These findings provide new insights to understand the mode of action of taxanes in treatment of human melanoma.  相似文献   

3.
《Free radical research》2013,47(10):1187-1198
Abstract

Aims. Endoplasmic reticulum (ER) stress exerts myocardial oxidative stress, apoptosis, and contractile anomalies, although the precise interplay between ER stress and apoptosis remains elusive. This study was designed to examine the impact of the cysteine-rich free radical scavenger metallothionein on ER stress-induced myocardial contractile defect and underlying mechanisms. Methods and results. Wild-type friendly virus B and transgenic mice with cardiac-specific overexpression of metallothionein were challenged with the ER stress inducer tunicamycin (1 mg/kg, intraperitoneal, 48 h) prior to the assessment of myocardial function, oxidative stress, and apoptosis. Our results revealed that tunicamycin promoted cardiac remodeling (enlarged left ventricular end systolic/diastolic diameters with little changes in left ventricular wall thickness), suppressed fractional shortening and cardiomyocyte contractile function, elevated resting Ca2+, decreased stimulated Ca2+ release, prolonged intracellular Ca2+ clearance, and downregulated sarco(endo)plasmic reticulum Ca2+-ATPase levels, the effects of which were negated by metallothionein. Treatment with tunicamycin caused cardiomyocyte mitochondrial injury, as evidenced by decreased mitochondrial membrane potential (??m, assessed by JC-1 staining), the effect of which was negated by the antioxidant. Moreover, tunicamycin challenge dramatically facilitated myocardial apoptosis as manifested by increased Bax, caspase 9, and caspase 12 protein levels, as well as elevated caspase 3 activity. Interestingly, metallothionein transgene significantly alleviated tunicamycin-induced myocardial apoptosis. Conclusion. Taken together, our data favor a beneficial effect of metallothionein against ER stress-induced cardiac dysfunction possibly associated with attenuation of myocardial apoptosis.  相似文献   

4.
5.
BNIP1, a member of the BH3-only protein family, was first discovered as one of the proteins that are capable of interacting with the antiapoptotic adenovirus E1B 19-kDa protein. Here we disclose a totally unexpected finding that BNIP1 is a component of the complex comprising syntaxin 18, an endoplasmic reticulum (ER)-located soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE). Functional analysis revealed that BNIP1 participates in the formation of the ER network structure, but not in membrane trafficking between the ER and Golgi. Notably, a highly conserved leucine residue in the BH3 domain of BNIP1 plays an important role not only in the induction of apoptosis but also in the binding of alpha-SNAP, an adaptor that serves as a link between the chaperone ATPase NSF and SNAREs. This predicts that alpha-SNAP may suppress apoptosis by competing with antiapoptotic proteins for the BH3 domain of BNIP1. Indeed, overexpression of alpha-SNAP markedly delayed staurosporine-induced apoptosis. Our results shed light on possible crosstalk between apparently independent cellular events, apoptosis and ER membrane fusion.  相似文献   

6.
Ca2+ is an important signalling molecule that regulates multiple cellular processes, including apoptosis. Although Ca2+ influx through transient receptor potential (TRP) channels in the plasma membrane is known to trigger cell death, the function of intracellular TRP proteins in the regulation of Ca2+‐dependent signalling pathways and apoptosis has remained elusive. Here, we show that TRPP2, the ion channel mutated in autosomal dominant polycystic kidney disease (ADPKD), protects cells from apoptosis by lowering the Ca2+ concentration in the endoplasmic reticulum (ER). ER‐resident TRPP2 counteracts the activity of the sarcoendoplasmic Ca2+ ATPase by increasing the ER Ca2+ permeability. This results in diminished cytosolic and mitochondrial Ca2+ signals upon stimulation of inositol 1,4,5‐trisphosphate receptors and reduces Ca2+ release from the ER in response to apoptotic stimuli. Conversely, knockdown of TRPP2 in renal epithelial cells increases ER Ca2+ release and augments sensitivity to apoptosis. Our findings indicate an important function of ER‐resident TRPP2 in the modulation of intracellular Ca2+ signalling, and provide a molecular mechanism for the increased apoptosis rates in ADPKD upon loss of TRPP2 channel function.  相似文献   

7.
The apoptotic effect of oxidized LDLs (oxLDLs) is mediated through a complex sequence of signaling events involving a deregulation of the cytosolic Ca(2+) homeostasis. OxLDLs also trigger ER stress that may lead to cellular dysfunction and apoptosis, through the activation of the IRE1α/c-Jun N-terminal kinase pathway. Moreover, ER stress and oxidized lipids have been shown to trigger autophagy. The antiatherogenic high-density lipoproteins (HDLs) display protective effects against oxLDLs toxicity. To more deeply investigate the mechanisms mediating the protective effects of HDLs, we examined whether ER stress and autophagy were implicated in oxLDLs-induced apoptosis and whether HDLs prevented these stress processes. We report that, in human endothelial cells, HDLs prevent the oxLDL-induced activation of the ER stress sensors IRE1α, eIF2α and ATF6 and subsequent activation of the proapoptotic mediators JNK and CHOP. OxLDLs also trigger the activation of autophagy, as assessed by LC3 processing and Beclin-1 expression. The autophagic process is independent of the proapoptotic arms of ER stress, but Beclin-1 contributes to PS exposure and subsequent phagocytosis of oxLDLs exposed cells. Induction of autophagy and PS exposure by oxLDLs is prevented by HDLs. Finally, the cytosolic Ca(2+) deregulation triggered by oxLDLs is a common signaling pathway that mediates ER stress-induced cell death and autophagy, all these events being blocked by HDLs.  相似文献   

8.
Osteosarcoma is a malignant primary bone tumor that responds poorly to both chemotherapy and radiation therapy. However, because of side effects and drug resistance in chemotherapy and the insufficiency of an effective adjuvant therapy for osteosarcoma, it is necessary to research novel treatments. This study was the first to investigate the anticancer effects of the flavonoid derivative artocarpin in osteosarcoma. Artocarpin induced cell apoptosis in three human osteosarcoma cell lines—U2OS, MG63, and HOS. Artocarpin was also associated with increased intracellular reactive oxygen species (ROS). Mitochondrial dysfunction was followed by the release of cytochrome c from mitochondria and accompanied by decreased antiapoptotic Bcl-2 and Bcl-xL and increased proapoptotic protein Bak and Bax. Artocarpin triggered endoplasmic reticulum (ER) stress, as indicated by changes in cytosol calcium levels and increased glucose-regulated protein 78 and 94 expressions, and also increased calpains expression and activity. Animal studies revealed a dramatic 40% reduction in tumor volume after 18 days of treatment. This study demonstrated a novel anticancer activity of artocarpin against human osteosarcoma cells and in murine tumor models. In summary, artocarpin significantly induced cell apoptosis through ROS, ER stress, mitochondria, and the caspase pathway, and may thus be a novel anticancer treatment for osteosarcoma.  相似文献   

9.
10.
p27kip1 is a cyclin-dependent kinase (CDK) inhibitor, which controls several cellular processes in strict collaboration with pRb. We evaluated the role of p27kip1 in paclitaxel-induced apoptosis in the pRb-defective SaOs-2 cells. Following 48 h of exposure of SaOs-2 cells to 100 nM paclitaxel, we observed an increase in p27kip1 expression caused by the decrease of the ubiquitin-proteasome activity. Such increase was not observed in SaOs-2 cells treated with the caspase inhibitors Z-VAD-FMK, suggesting that p27kip1 enhancement at 48 h is strictly related to apoptosis. Finally, we demonstrated that SaOs-2 cells transiently overexpressing the p27kip1 protein are more susceptible to paclitaxel-induced apoptosis than SaOs-2 cells transiently transfected with the empty vector. Indeed, after 48 h of paclitaxel treatment, 41.8% of SaOs-2 cells transiently transfected with a pcDNA3-p27kip1 construct were Annexin V-positive compared to 30.6% of SaOs-2 cells transfected with the empty vector (P < 0.05). In conclusion, we demonstrated that transfection of the pRb-defective SaOs-2 cells with the p27kip1 gene via plasmid increases their susceptibility to paclitaxel-induced apoptosis. The promoting effect of p27kip1 overexpression on apoptosis makes p27kip1 and proteasomal inhibitors interesting tools for therapy in patients with pRb-defective cancers.  相似文献   

11.
Endoplasmic reticulum (ER) stress has increasingly come into focus as a factor contributing to neuronal injury. Although caspase-dependent mechanisms have been implicated in ER stress, the signaling pathways involved remain unclear. In this study, we examined the role of the extracellular signal-regulated kinase (ERK), a mitogen-activated protein (MAP) kinase pathway that is highly conserved in many systems for balancing cell survival and death. Prolonged treatment of the human neuroblastoma cell line SH-SY5Y with thapsigargin, an inducer of ER stress, increased cell death over 24-48 h, as measured by LDH release. Caspases were involved; increased levels of active caspase-3 and cleaved caspase substrate PARP were detected, and treatment with Z-VAD-FMK reduced thapsigargin-induced cytotoxicity. In contrast, inhibition of calpain was not protective, although calpain was activated following thapsigargin treatment. An early and transient phosphorylation of ERK1/2 occurred after thapsigargin-induced ER stress, and targeting this pathway with the MEK inhibitors U0126 or PD98059 significantly reduced cell death. Similar cytoprotection was obtained against brefeldin A, another ER stress agent. However, protection against ER stress via ERK inhibition was not accompanied by amelioration of caspase-3 activation, PARP cleavage, or DNA laddering. These data indicate that ERK may contribute to non-caspase-dependent pathways of injury after ER stress.  相似文献   

12.
Interferon-gamma (IFN-gamma) induces cell-cycle arrest and p53-independent apoptosis in primary cultured hepatocytes. However, the detailed mechanism, including regulating molecules, is still unclear. In this study, we found that IFN-gamma induced generation of reactive oxygen species (ROS) in primary hepatocytes and that pyrrolidinedithiocarbamate (PDTC), an anti-oxidant reagent, completely suppressed IFN-gamma-induced hepatic apoptosis. PDTC blocked apoptosis downstream from IRF-1 and upstream from caspase activation, suggesting that the generation of ROS occurred between these stages. However, IFN-gamma also induced the generation of ROS in IRF-1-deficient hepatocytes, cells insensitive to IFN-gamma-induced apoptosis. Moreover, a general cyclooxygenase (COX) inhibitor, indomethacin (but not the cyclooxygenase 2-specific inhibitor, NS-398) also inhibited the apoptosis without blocking the generation of ROS. Both PDTC and indomethacin also blocked IFN-gamma-induced release of cytochrome c from mitochondria. These results suggest that ROS are not the only or sufficient mediators of IFN-gamma-induced hepatic apoptosis. In contrast, we also found that IFN-gamma induced endoplasmic reticulum (ER) stress proteins, CHOP/GADD153 and caspase 12, in wild-type primary hepatocytes, but induced only caspase 12 and not CHOP/GADD153 protein in IRF-1-deficient hepatocytes. These results suggest that IFN-gamma induces ER stress in primary hepatocytes. Both the ROS and ER stress induced by IFN-gamma may be complementary mediators that induce apoptosis in primary hepatocytes.  相似文献   

13.
Michaël Cerezo 《Autophagy》2017,13(1):216-217
Treatment of melanoma has significantly advanced over the last decade, with the development of targeted therapies against the MAPK pathway and immunotherapies to reactivate antitumor immunity. Unfortunately, currently more than 50% of patients are in treatment failure. Thus, identification of new common cellular vulnerability among melanoma cells is an urgent need and will help in the discovery of more efficient treatments against melanoma. We have focused our study on protein processing and have identified a new compound, HA15, targeting HSPA5/BiP, the master regulator of the unfolded protein response (UPR). By inhibiting HSPA5 specifically, our molecule increases the UPR and leads to the death of cancer cells by concomitant induction of autophagy and apoptosis, an effect seen both in vitro and in vivo. Our study provides compelling evidence to support the idea that endoplasmic reticulum (ER) stress inducers could be useful as a new therapeutic approach in melanoma treatment.  相似文献   

14.
15.
Sensitive to apoptosis gene (SAG) protein, a novel zinc RING finger protein that protects mammalian cells from apoptosis by redox reagents, is a metal chelator and a potential reactive oxygen species (ROS) scavenger, but its antioxidant properties have not been completely defined. Nitric oxide (NO), a radical species produced by many types of cells, is known to play a critical role in many regulatory processes, yet it may also participate in collateral reactions at higher concentrations, leading to cellular oxidative stress. In this report, we demonstrate that modulation of SAG expression in U937 cells regulates NO-induced apoptosis. When we examined the protective role of SAG against NO-induced apoptosis with U937 cells transfected with the cDNA for SAG, a clear inverse relationship was observed between the amount of SAG expressed in target cells and their susceptibility to apoptosis. We also observed the significant decrease in the endogenous production of ROS and oxidative DNA damage in SAG-overexpressed cells compared to control cells upon exposure to NO. These results suggest that SAG plays an important protective role in NO-induced apoptosis, presumably, through regulating the cellular redox status.  相似文献   

16.
Sequential activation of cyclin-dependent kinases (Cdks) controls mammalian cell cycle. Here we demonstrate that the upregulation of cyclin-dependent kinase 2 (Cdk2) activity coincides with the loss of mitochondrial membrane potential (MMP) in paclitaxel-induced apoptosis. Ectopic expression of the dominant negative Cdk2 (Cdk2-dn) and a specific Cdk2 inhibitor, p21WAF1/CIP1, effectively suppresses the loss of MMP, the release of cytochrome c, and subsequent activation of caspase-3 in paclitaxel-treated cells. Whereas forced activation of Cdk2 by overexpression of cyclin A dramatically promotes these events. We further show that Cdk2 activation status does not interfere with a procedure that lies downstream of cytochrome c release induced by Bax protein. These findings suggest that Cdk2 kinase can regulate apoptosis at earlier stages than mitochondrial permeability transition and cytochrome c release.  相似文献   

17.
Liang B  Song X  Liu G  Li R  Xie J  Xiao L  Du M  Zhang Q  Xu X  Gan X  Huang D 《Experimental cell research》2007,313(13):2833-2844
Nuclear orphan receptor TR3/Nur77/NGFI-B is a novel apoptotic effector protein that initiates apoptosis largely by translocating from the nucleus to the mitochondria, causing the release of cytochrome c. However, it is possible that TR3 translocates to other organelles. The present study was designed to determine the intracellular localization of TR3 following CD437-induced nucleocytoplasmic translocation and the mechanisms involved in TR3-induced apoptosis. In human neuroblastoma SK-N-SH cells and human esophageal squamous carcinoma EC109 and EC9706 cells, 5 microM CD437 induced translocation of TR3 to the endoplasmic reticulum (ER). This distribution was confirmed by immunofluorescence analysis, subcellular fractionation analysis and coimmunoprecipitation analysis. The translocated TR3 interacted with ER-targeting Bcl-2; initiated an early release of Ca(2+) from ER; resulted in ER stress and induced apoptosis through ER-specific caspase-4 activation, together with induction of mitochondrial stress and subsequent activation of caspase-9. Our results identified a novel distribution of TR3 in the ER and defined two parallel mitochondrial- and ER-based pathways that ultimately result in apoptotic cell death.  相似文献   

18.
19.
Aberrant overexpression of antiapoptotic members of the Bcl-2 protein family contributes to resistance to anticancer therapeutic drugs. Thus, this protein represent attractive target for novel anticancer agents. In the present study, we determined the effect of the anti-apoptosis protein Bcl-2 on caspase-3 activation, PLC-γ1 degradation and Akt activation during the various anticancer agents-induced apoptosis. Treatment with chrysin for 12 h produced morphological features of apoptosis in U937 cells, which was associated with caspase-3 activation and PLC-γ1 degradation. Induction of apoptosis was also accompanied by down-regulation of XIAP and inactivation of Akt. Chrysin-induced caspase-3 activation, PLC-γ1 degradation and apoptosis were significantly attenuated in Bcl-2 overexpressing U937/Bcl-2 cells. Ectopic expression of Bcl-2 appeared to inhibit ceramide-, and Akt specific inhibitor (SH-6)-induced apoptosis by sustained Akt activation. Thus, our findings imply that some of the biological functions of Bcl-2 may be attributed to their ability to inhibit anticancer agents-induced apoptosis through the sustained Akt activation.  相似文献   

20.
To test the role of ER luminal environment in apoptosis, we generated HeLa cell lines inducible with respect to calreticulin and calnexin and investigated their sensitivity to drug-dependent apoptosis. Overexpression of calreticulin, an ER luminal protein, resulted in an increased sensitivity of the cells to both thapsigargin- and staurosporine-induced apoptosis. This correlated with an increased release of cytochrome c from the mitochondria. Overexpression of calnexin, an integral ER membrane protein, had no significant effect on drug-induced apoptosis. In contrast, calreticulin-deficient cells were significantly resistant to apoptosis and this resistance correlated with a decreased release of cytochrome c from mitochondria and low levels of caspase 3 activity. This work indicates that changes in the lumen of the ER amplify the release of cytochrome c from mitochondria, and increase caspase activity, during drug-induced apoptosis. There may be communication between the ER and mitochondria, which may involve Ca(2+) and play an important role in conferring cell sensitivity to apoptosis. Apoptosis may depend on both the presence of external apoptosis-activating signals, and, as shown in this study, on an internal factor represented by the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号