首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We have found that a group of 53 chromatin-positive males consisting of XXY, XX and XY/XXY individuals had significantly lower average value of plasma testosterone than a group of 82 normal men. A comparison of these different chromosome variants and their plasma testosterone showed distinctly lowest value in males with 46,XX karyotype.
Zusammenfassung Wir haben gefunden, daß eine Gruppe von 53 chromatinpositiven Männern, bestehend aus einzelnen XXY, XX und XY/XXY, einen durchschnittlich niedrigeren Wert an Plasmatestosteron hatten als eine Gruppe von 82 normalen Männern. Ein Vergleich von verschiedenen Chromosomenvarianten und deren Plasmatestosteron zeigte genau den niedrigsten Wert bei Männern mit 46,XX-Karyotyp.
  相似文献   

2.
Summary Herein is described an attempts to establish chromosome pairing-interchange relationships in Drosophila melanogaster female. For this purpose, the formation of half-translocations was studied in XXY and XX females bearing compounds of the second pair of autosomes. With respect to XXY females, it was expected that the free Y chromosome would pair with these compounds and that half-translocations involving 2L would arise. In as much as compound chromosomes in XX females had no partner for pairing, the formation of half-translocations involving 2L was not expected.Half-translocations were registered in the F1 from crosses of XX and XXY females to b j pr cn/T(Y;2)C males. The cross was designed to permit the detection of very rarely occurring non-homologue interchanges.Offspring number was 335 in XX females and 550 in XXY females. The majority of offspring consisted of individuals arisen from the spontaneous restitution of compounds and the formation of 2n egg cells. Based on phenotype, the offspring of XX females contained 4 individuals with half-translocations involving 2L; there were 48 such flies among the offspring of XXY females. As confirmed by progeny analysis, 38 half-translocations occurred in XXY females and none in XX females. Of the 31 spontaneous interchanges in XXY females 28 were recorded between the Y and the left compound, one between the Y and the right compound, and one between the X and the left compound. Non-homologue interchanges were of oogonial origin judging by the fact that individuals with half-translocations arose in clusters. Unlike Y — left compound interchanges, the interchanges between autosomal compounds seem to be of meiotic origin.  相似文献   

3.
Male mammals with two X chromosomes are sterile due to the demise of virtually all germ cells; however, the underlying reasons for the germ cell loss remain unclear. The use of a breeding scheme for the production of XXY male mice has allowed us to experimentally address the question of when and why germ cells die in the XXY testis and whether the defect is due to the presence of an additional X chromosome in the soma, the germ cells themselves, or both. Our studies demonstrate that altered X-chromosome dosage acts to impair germ cell development in the testis at a much earlier stage than suggested by previous studies of XX sex-reversed males or XX/XY chimeras. Specifically, we noted significantly reduced germ cell numbers in the XXY testis during the period of germ cell proliferation in the early stages of testis differentiation. Although the somatic development of the XXY testis is morphologically and temporally normal, our studies indicate that germ cell demise reflects a defect in somatic/germ cell communication, since, in an in vitro system, the proliferative potential of fetal germ cells from XXY males is indistinguishable from that of normal males. Mol. Reprod. Dev. 49:101–111, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Summary This paper reports an attempt to determine whether the short arm of one of the X chromosomes in XX males is longer than normal. In a blind study comparing coded photomicrographs of 15 G-banded mitoses from each of five XX males and five control females, the results were ambiguous and somewhat contradictory, but gave the impression of, or were compatible with, an XXp+ phenomenon in at least two of the five XX males. Measurements of the X chromosomes from the above cells and, in addition, from 15 mitoses from each of six XXY males, failed to disclose any XXp+ phenomenon. Statistical analysis indicated that in the five XX males there was no difference in the lengths of the two Xp arms. The reasons for the apparent discrepancy between the results of ocular inspection and measurement are discussed. The putative heteromorphism might be an alteration in shape, staining intensity, or position of bands, neither of which necessarily leads to an increase in length. We conclude that our results do not indicate any XXp+ phenomenon in the five XX males tested. However, the presence or absence of XXp+ is not in itself evidence for or against interchange between the X and Y in the paternal meiosis. Our results emphasize that the etiology of XX males is likely to be heterogeneous.  相似文献   

5.
Both mouse and man have the common XX/XY sex chromosome mechanism. The X chromosome is of original size (5-6% of female haploid set) and the Y is one of the smallest chromosomes of the complement. But there are species, belonging to a variety of orders, with composite sex chromosomes and multiple sex chromosome systems: XX/XY1Y2 and X1X1X2X2/X1X2Y. The original X or the Y, respectively, have been translocated on to an autosome. The sex chromosomes of these species segregate regularly at meiosis; two kinds of sperm and one kind of egg are produced and the sex ratio is the normal 1:1. Individuals with deviating sex chromosome constitutions (XXY, XYY, XO or XXX) have been found in at least 16 mammalian species other than man. The phenotypic manifestations of these deviating constitutions are briefly discussed. In the dog, pig, goat and mouse exceptional XX males and in the horse XY females attract attention. Certain rodents have complicated mechanisms for sex determination: Ellobius lutescens and Tokudaia osimensis have XO males and females. Both sexes of Microtus oregoni are gonosomic mosaics (male OY/XY, female XX/XO). The wood lemming, Myopus schisticolor, the collared lemming, Dirostonyx torquatus, and perhaps also one or two species of the genus Akodon have XX and XY females and XY males. The XX, X*X and X*Y females of Myopus and Dicrostonyx are discussed in some detail. The wood lemming has proved to be a favourable natural model for studies in sex determination, because a large variety of sex chromosome aneuploids are born relatively frequently. The dosage model for sex determination is not supported by the wood lemming data. For male development, genes on both the X and the Y chromosomes are necessary.  相似文献   

6.
Dermatoglyphic analyses were carried out on a sample of children with known sex chromosomal aneuploidies (25 XXY, 10 XXX, 1 XXYY). Digital ridge counts and pattern types were determined for each individual. Palm prints and sole patterns were also examined. The results of our study were compared with data from previous studies of sex chromosomal aneuploidies. Our results for the XXY males agree with the findings from other studies with respect to total ridge counts and plantar dermatoglyphics, but not for digital pattern frequencies. Our one example of an XXYY male showed hypothenar patterns similar to those found for this syndrome by other researchers, but neither the digital pattern types nor the unexpectedly high total ridge count conforms to the findings from other studies. Our sample of XXX females falls within the normal XX female range of variation with respect to hypothenar patterns and total ridge count; plantar features show a higher incidence of patterns than previously reported.  相似文献   

7.
Xiang Y  Hawley RS 《Genetics》2006,174(1):67-78
Bridges (1916) observed that X chromosome nondisjunction was much more frequent in XXY females than it was in genetically normal XX females. In addition, virtually all cases of X nondisjunction in XXY females were due to XX <--> Y segregational events in oocytes in which the two X chromosomes had failed to undergo crossing over. He referred to these XX <--> Y segregation events as "secondary nondisjunction." Cooper (1948) proposed that secondary nondisjunction results from the formation of an X-Y-X trivalent, such that the Y chromosome directs the segregation of two achiasmate X chromosomes to opposite poles on the first meiotic spindle. Using in situ hybridization to X and YL chromosomal satellite sequences, we demonstrate that XX <--> Y segregations are indeed presaged by physical associations of the X and Y chromosomal heterochromatin. The physical colocalization of the three sex chromosomes is observed in virtually all oocytes in early prophase and maintained at high frequency until midprophase in all genotypes examined. Although these XXY associations are usually dissolved by late prophase in oocytes that undergo X chromosomal crossing over, they are maintained throughout prophase in oocytes with nonexchange X chromosomes. The persistence of such XXY associations in the absence of exchange presumably facilitates the segregation of the two X chromosomes and the Y chromosome to opposite poles on the developing meiotic spindle. Moreover, the observation that XXY pairings are dissolved at the end of pachytene in oocytes that do undergo X chromosomal crossing over demonstrates that exchanges can alter heterochromatic (and thus presumably centromeric) associations during meiotic prophase.  相似文献   

8.
Prior to entry into meiosis, XX germ cells in the fetal ovary undergo X chromosome reactivation. The signal for reactivation is thought to emanate from the genital ridge, but it is unclear whether it is specific to the developing ovary. To determine whether the signals are present in the developing testis as well as the ovary, we examined the expression of X-linked genes in germ cells from XXY male mice. To facilitate this analysis, we generated XXY and XX fetuses carrying X chromosomes that were differentially marked and subject to nonrandom inactivation. This pattern of nonrandom inactivation was maintained in somatic cells but, in XX as well as XXY fetuses, both parental alleles were expressed in germ cell-enriched cell populations. Because testis differentiation is temporally and morphologically normal in the XXY testis and because all germ cells embark upon a male pathway of development, these results provide compelling evidence that X chromosome reactivation in fetal germ cells is independent of the somatic events of sexual differentiation. Proper X chromosome dosage is essential for the normal fertility of male mammals, and abnormalities in germ cell development are apparent in the XXY testis within several days of X reactivation. Studies of exceptional germ cells that survive in the postnatal XXY testis demonstrated that surviving germ cells are exclusively XY and result from rare nondisjunctional events that give rise to clones of XY cells.  相似文献   

9.
F Pera  P Scholz 《Humangenetik》1975,30(2):173-177
The late replication pattern of the short arms of the X chromosomes of Microtus agrestis was studied in female cells and in cells with 2 X chromosomes of male origin by means of the BUdR-Giemsa technique and of 3H-thymidine labelling. The light absorption of Giemsa stained chromosome sections which were unifilarly substituted with BUdR (labelled), was found to be 59.2% of that of unlabelled chromosomes. In female cells, asynchrony of DNA replication of both X chromosomes indicated the presence of facultative heterochromatin in the X2 and euchromatin in the X1. In the male cells only euchromatic X chromosomes were observed in diploid XX and XO cells as well as in triploid XXY, XX and XO cells. The results show that inactivation of an X chromosone in vitro, in cells with more than one originally active X chromosome does not occur even after a culture duration of several years.  相似文献   

10.
Cytogenetic evaluation of 163 azoospermics   总被引:2,自引:0,他引:2  
A constitutional chromosomal aberration was diagnosed in 38/163 (23.3%) azoospermic patients. Whereas the 47,XXY complement was the commonest (31/38 cases), the following abnormal karyotypes were also found: 46,XX; 46,X,del(Y) (q11); 46,X,r(Y); 46,XY,inv(1) (p3500q21.3)mat; and 46,Y,t(X;3) (q26;q13.2)mat (both the deleted and the annular Y were observed twice). Pooled data from the literature showed that the frequency of chromosomal abnormalities is higher in azoospermic (150.4/1000) than in infertile (55.3/1000) males, which in turn is higher than in newborns (less than 6/1000). The observed different frequency between azoospermic and infertile individuals is given by several types of chromosomal abnormalities, mainly by the complement 47,XXY. The analysis also showed that the male infertility secondary to rob translocations and supernumerary marker chromosomes is usually not related to azoospermia. The contrary occurs in certain rcp and gonosome;autosome translocations and in autosome inversions.  相似文献   

11.
In a representative sample of 3,840 males examined for military service chromosome examination was made in those with testes equal to or less than 12 ml and those with a stature equal to or greater than 181 cm, as well as in males not recruited because of physical or mental disability. Testes equal to or less than 12 ml were found in 59 patients (1.45%). Three of these males had a 47,XXY karyotype (5.1%), the prevalence among the total sample of 3,840 being 0.78 per 1,000. Hypogonadal signs, except for gynaecomastia, which was only present in one patient, were found in the saem proportion as in 47,XXY males ascertained in institutions and clinics. The results of EEG investigations were alos similar to those found in psychiatric institutions. The intelligence level was comparatively low; none had an IQ above 100. The personality traits corresponded to those found in institutionalized Klinefelter males.  相似文献   

12.
The effects of an extra X chromosome on size and shape of body and head were studied in 47,XXY males; 25 anthropometric measurements were recorded from 29 adult 47,XXY males and compared with those of male relatives and control males. In stature, arm length, leg length, triceps skinfold, and subscapular skinfold 47,XXY males were larger and in biacromial diameter, bideltoid breadth, wrist breadth, and in most head dimensions smaller than normal males. Arm length was increased less than leg length. Increase in stature seemed to be caused solely by increased leg length, and the somewhat feminine proportions in trunk were caused by decrease in biacromial diameter. Correlations of the body and head dimensions between 47,XXY males and their male relatives were found to be normal. The present findings support the earlier proposals that X chromosome carries genes which influence linear growth. It is suggested that the reduction in biacromial diameter is caused by lowered plasma testosterone level which may also have affected sitting height. The control of body and head dimensions seems to be maintained relatively normal.  相似文献   

13.
C. van Heemert 《Chromosoma》1974,47(3):237-251
Translocation- and tertiary trisomies (for the X-chromosomes) were obtained after testcrossing translocation heterozygous females of an X-linked “simple” translocation stock. Meiotic disjunction as judged from segregations at M II (males) and in young eggs of testcrosses (males and females) in translocation trisomics was studied. No progeny of tertiary trisomic males and females was found, but male M II could be studied. Six different orientation types appeared in translocation trisomie (2n + 1) males and these were present in equal frequencies. No adjacent II configurations were found. The small X- and Y-chromosomes and the large translocated X-chromosome of the translocation complex disjoin at random (n and n + 1 gametes) in both translocation- and tertiary trisomic males. In translocation trisomic females four different orientation types appeared. From the high frequency of two of these (together, 94.5%) it is concluded that the two normal X-chromosomes show preferential pairing and disjunction, while the translocated X-chromosome moves to either one of the two poles at random. Primary trisomic (for the X-chromosome) males (XXY) and females (XXX) were obtained from testerossed translocation trisomics. Cytological analysis of adult male progeny of testerossed XXY males showed that no random orientation for the X-, X- and Y-chromosomes occurred because half of the sons was disomic (XY) and half of them trisomic (XXY). A possible mechanism is discussed. Analysis of young eggs of testerossed XXX females indicated a segregation of 2X∶1X=1∶1. The level of “semi”-sterility as scored from testcrosses of translocation trisomies appeared to be as in translocation heterozygotes. Here again a close relation exists between “semi”-sterility and deficiencies in eggs for a large chromosomal segment. The possible use of this translocation for genetic control of insect pests is discussed.  相似文献   

14.
Zusammenfassung Es werden die histologischen Befunde an 4 triploiden Spätaborten (14.–21. Woche post menstruationem) beschrieben. Es handelt sich um 3 Triploidien (zweimal 69,XXY und einmal 69,XXX) und 1 Mosaik 46,XX/69,XXY (1:1). An allen 4 Placenten ergaben sich typische degenerative hydatidiforme Veränderungen bei einem Entwicklungsstand von 21–31 Tagen post ovulationem (p.o.). In 2 Fällen waren Embryonen vorhanden, die Mißbildungen im Bereich des ZNS und der caudalen Regionen aufwiesen. Der Entwicklungsstand der Embryonen wurde nach äußerlichen Merkmalen mit 28–30 Tagen p.o. bestimmt. Die histologische Analyse deckte einen Differenzierungsstand von 5–51/2 Wochen p.o. auf.
Histological analysis of spontaneous abortions with triploidy
Summary 4 triploid abortions with an gestational age of 14–21 weeks were analyzed histologically. 3 of them showed true triploidies (two 69,XXY, one 69,XXX), whereas 1 was a mosaic 46,XX/69,XXY (1:1). Hydatidiform degeneration was found in all the placentae. Normal development had been stopped at an ovulational age of 21–31 days. 2 embryos were found and analyzed histologically. They were malformed, mainly in the CNS and in the caudal region. Development of the external features had been stopped at 28–30 days, while histological analysis revealed, that the developmental arrest of the organs occurred at an ovulational age of 5 and 5 1/2 weeks.


Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.

Vorgetragen auf dem 2. Kongreß der European Teratology Society, Prag, 23–26. 5. 1972.  相似文献   

15.
Meiotic segregation of gonosomes from a 46,XY/47,XXY male was analysed by a three-colour fluorescence in situ hybridisation (FISH) procedure. This method allows the identification of hyperhaploid spermatozoa (with 24 chromosomes), diploid spermatozoa (with 46 chromosomes) and their meiotic origin (meiosis I or 11). Alpha satellite DNA probes specific for chromosomes X, Y and 1 were observed on 27,097 sperm nuclei. The proportions of X-and Y -bearing sperm were estimated to 52.78% and 43.88%, respectively. Disomy (24,XX, 24,YY, 24,X or Y,+1) and diploidy (46,XX, 46,YY, 46,XY) frequencies were close to those obtained from control sperm, whereas the frequency of hyperhaploid 24,XY spermatozoa (2.09%) was significantly increased compared with controls (0.36%). These results support the hypothesis that a few 47,XXY germ cells would be able to complete meiosis and to produce mature spermatozoa.  相似文献   

16.
The inheritance of several X-linked restriction fragment length polymorphisms ( RFLPs ) is examined in seven 46,XX males and their immediate relatives. The XX males are shown to have inherited a paternal and a maternal RFLP allele in each of the five (of seven) families in which these X-linked markers are informative. In the other two families, a maternal X-chromosomal contribution is demonstrated, but a paternal contribution cannot be determined. We conclude that most, if not all, XX males inherit one paternal and one maternal X chromosome. A segment of single-copy DNA specific to the short arm of the Y chromosome is found to be absent from the genomes of eight XX males. In one of these XX males, an Xp-Yp translocation had previously been inferred from chromosome-banding studies. Our findings argue against mosaicism involving a Y-containing cell line in the XX males examined here, but they do not exclude an X-Y (or Y-autosome) translocation during paternal meiosis. If such a translocation has occurred, the translocation product received by the XX males does not include the Yp-specific sequence tested here.  相似文献   

17.
A 47,XXY/46,XY male was investigated for the incidence of aneuploidy in sperm sex chromosomes using a three-colour X/Y/18 fluorescence in situ hybridisation (FISH) protocol. A total of 1701 sperm nuclei were analysed. The ratio of X-bearing to Y-bearing sperm did not differ from the expected 1 : 1 ratio although there were more 23,Y sperm than 23,X sperm (844 vs 795). There was a significantly increased proportion of disomy XY and XX sperm compared with normal controls (0.41% vs 0.10%, P < 0.001 and 0.29% vs 0.04%, P < 0.01). However, the incidence of YY sperm was similar to the controls (0.06% vs 0.02%). The diploidy rate was also significantly increased (1.7% vs 0.13%, P < 0.0001), as was disomy 18 (0.71% vs 0.01%) and 25,XXY (0.47% vs 0%). The results support the hypothesis that some 47,XXY cells are able to undergo meiosis and produce mature spermatozoa. Patients with mosaic Klinefelter syndrome with severe oligozoospermia have significantly elevated incidences of disomy XY and XX sperm and may be at a slightly increased risk of producing 47,XXX and 47,XXY offspring. Additionally, they may be at risk of producing offspring with autosomal trisomies. Hence, patients with Klinefelter mosaicism scheduled for intracytoplasmic sperm injection intervention should first undergo FISH analysis of their sperm to determine their risk. Received: 16 November 1998 / Accepted: 16 February 1999  相似文献   

18.
The wood lemming displays certain peculiar features: (1) The sex ratio shows a prevalence of females (FRANK, 1966; KALELA and OKSALA, 1966), and some females produce only female offspring (KALELA and OKSALA, 1966). (2) In a considerable proportion (in the present material, slightly less than half) of the females, an XY chromosome complement is found in the somatic tissues, but the Y is absent in the germ line of those studied (Fredga et al., 1976). Therefore, (3) a mechanism of double nondisjunction in early fetal life of XY females has to be postulated, which replaces the Y in the germ line by duplication of the X. It is assumed (4) that the X of XY females bears a sex-reversal factor that affects the male determining action of the Y (Fredga et al., 1977). There is (5) a strong presumption that in most cases the XY females are those that produce daughters only, but (6) a few exceptions may occur (FRANK, unpublished observations), suggesting that the regulation according to assumption 3 (perhaps also to 4) is incomplete in XY females. In the present report, four females are described with a 31,XO karyotype, two females with 33,XYY or 32,XY/33,XYY, respectively, two males with a 33,XXY, and one male with a 32,XX/33,XXY karyotype, as observed in a consecutive series of 502 wood lemmings. The incidence of sex-chromosome anomalies in liveborn and adult animals was 2.3%; the overall incidence, including embryos, was 1.79%. Neither the somatic XO constitution nor the existence of an extra Y in females precludes fertility. However, the XXY condition in the male results in sterility. There is certain evidence that an instability of the proposed mechanism for double mitotic nondisjunction of the sex chromosomes in oogonia accounts for the high rate of sex-chromosome aberrations in wood lemmings, at least when the mother is XY.  相似文献   

19.
Incidence of sex chromosome aneuploidy in men is as high as 1:500. The predominant conditions are an additional Y chromosome (47,XYY) or an additional X chromosome (47,XXY). Behavioral studies using animal models of these conditions are rare. To assess the role of sex chromosome aneuploidy on sexual behavior, we used mice with a spontaneous mutation on the Y chromosome in which the testis-determining gene Sry is deleted (referred to as Y) and insertion of a Sry transgene on an autosome. Dams were aneuploid (XXY) and the sires had an inserted Sry transgene (XY Sry ). Litters contained six male genotypes, XY, XYY, XX Sry , XXY Sry , XY Sry and XYY Sry . In order to eliminate possible differences in levels of testosterone, all of the subjects were castrated and received testosterone implants prior to tests for male sex behavior. Mice with an additional copy of the Y chromosome (XYY) had shorter latencies to intromit and achieve ejaculations than XY males. In a comparison of the four genotypes bearing the Sry transgene, males with two copies of the X chromosome (XX Sry and XXY Sry ) had longer latencies to mount and thrust than males with only one copy of the X chromosome (XY Sry and XYY Sry ) and decreased frequencies of mounts and intromissions as compared with XY Sry males. The results implicate novel roles for sex chromosome genes in sexual behaviors.  相似文献   

20.
LT/Sv strain mice regularly ovulate up to 50% of their eggs as primary oocytes, which are fertilisable and give rise to digynic triploid embryos. A similar number of eggs are ovulated as secondary oocytes and, following fertilisation, give rise to normal diploid embryos. Pregnant LT/Sv females were autopsied at about midday on day 10 of gestation, when normal diploid embryos would be expected to possess between 25 and 30 pairs of somites. While a few of the triploid embryos either consisted of disorganised embryonic masses or were resorbing, most were at readily recognisable embryonic stages. Just over half of the embryos recovered were "unturned," while the remainder had "turned" and possessed between 15 and 25 pairs of somites. The triploids were usually readily recognised, owing to their small size and because they often displayed neural tube and cardiac defects. All of the embryos recovered were analysed cytogenetically by G-banding to establish their ploidy and sex-chromosome constitution. The XY:XX sex ratio of the 105 diploid embryos recovered, all of which had "turned," was 1.06:1, while the overall XXY:XXX sex ratio of the 120 triploids was 1:1. Analysis of only the developmentally most advanced triploid embryos (i.e., the 49 that had "turned") revealed that the XXY:XXX sex ratio in this group was 1.13:1, which was not significantly different from the expected ratio of 1:1. The crown-rump lengths of the XY and XX "turned" embryos were almost identical, as were those of the XXY and XXX "turned" embryos, although the triploids were significantly smaller than the diploids. No obvious effect of sex-chromosome constitution on developmental potential was therefore observed in this study in relation to either the digynic triploid or the control diploid embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号