首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Furin, a subtilisin-like eukaryotic endoprotease, is responsible for proteolytic cleavage of cellular and viral proteins transported via the constitutive secretory pathway. Cleavage occurs at the C-terminus of basic amino acid sequences, such as R-X-K/R-R and R-X-X-R. Furin was found predominantly in the trans-Golgi network (TGN), but also in clathrin-coated vesicles dispatched from the TGN, on the plasma membrane as an integral membrane protein and in the medium as an anchorless enzyme. When furin was vectorially expressed in normal rat kidney (NRK) cells it accumulated in the TGN similarly to the endogenous glycoprotein TGN38, often used as a TGN marker protein. The signals determining TGN targeting of furin were investigated by mutational analysis of the cytoplasmic tail of furin and by using the hemagglutinin (HA) of fowl plague virus, a protein with cell surface destination, as a reporter molecule, in which membrane anchor and cytoplasmic tail were replaced by the respective domains of furin. The membrane-spanning domain of furin grafted to HA does not localize the chimeric molecule to the TGN, whereas the cytoplasmic domain does. Results obtained on furin mutants with substitutions and deletions of amino acids in the cytoplasmic tail indicate that wild-type furin is concentrated in the TGN by a mechanism involving two independent targeting signals, which consist of the acidic peptide CPSDSEEDEG783 and the tetrapeptide YKGL765. The acidic signal in the cytoplasmic domain of a HA-furin chimera is necessary and sufficient to localize the reporter molecule to the TGN, whereas YKGL is a determinant for targeting to the endosomes. The data support the concept that the acidic signal, which is the dominant one, retains furin in the TGN, whereas the YKGL motif acts as a retrieval signal for furin that has escaped to the cell surface.  相似文献   

3.
Microfibril-associated glycoprotein 2 (MAGP2) is a secreted protein associated with multiple cellular activities including the organization of elastic fibers in the extracellular matrix (ECM), angiogenesis, as well as regulating Notch and integrin signaling. Importantly, increases in MAGP2 positively correlate with poor prognosis for some ovarian cancers. It has been assumed that full-length MAGP2 is responsible for all reported effects; however, here we show MAGP2 is a substrate for the proprotein convertase (PC) family of endoproteases. Proteolytic processing of MAGP2 by PC cleavage could serve to regulate secretion and thus, activity and function as reported for other extracellular and cell-surface proteins. In support of this idea, MAGP2 contains an evolutionarily conserved PC consensus cleavage site, and amino acid sequencing of a newly identified MAGP2 C-terminal cleavage product confirmed functional PC cleavage. Additionally, mutagenesis of the MAGP2 PC consensus cleavage site or treatment with PC inhibitors prevented MAGP2 proteolytic processing. Finally, both cleaved and uncleaved MAGP2 were detected extracellularly and MAGP2 secretion appeared independent of PC cleavage, suggesting that PC processing occurs mainly outside the cell. Our characterization of alternative forms of MAGP2 present in the extracellular space not only enhances diversity of this ECM protein but also provides a previously unrecognized molecular mechanism for regulation of MAGP2 biological activity.  相似文献   

4.
Mature endothelial lipase (EL) is a 68 kDa glycoprotein. In HepG2 cells infected with adenovirus encoding human EL, the mature EL was detectable in the cell lysates and heparin-releasable fractions. In contrast, cell media of these cells contained two EL fragments: an N-terminal 40 kDa fragment and a C-terminal 28 kDa fragment. N-terminal protein sequencing of the His-tagged 28 kDa fragment revealed that EL is cleaved on the C terminus of the sequence RNKR330, the consensus cleavage sequence for mammalian proprotein convertases (pPCs). Replacement of Arg-330 with Ser by site-directed mutagenesis totally abolished EL processing. EL processing could efficiently be attenuated by specific inhibitors of pPCs, alpha1-antitrypsin Portland (alpha1-PDX) and alpha1-antitrypsin variant AVRR. Coexpression of the pPCs furin, PC6A, and PACE4 with EL resulted in a complete conversion of the full-length EL to a truncated 40 kDa fragment. Exogenously added EL was also processed by cells, and the processing could be attenuated by alpha1-PDX. The expressed N-terminal 40 kDa fragment of EL (EL-40) harboring the catalytic site failed to hydrolyze [14C]NEFA from [14C]dipalmitoyl-PC-labeled HDL. EL-40 was incapable of bridging 125I-labeled HDL to the cells and had no impact on plasma lipid concentration when overexpressed in mice. Thus, our results demonstrate that pPCs are involved in the inactivation process of EL.  相似文献   

5.
The proprotein convertases (PCs) are calcium-dependent proteases responsible for processing precursor proteins into their active forms in eukariotes. The PC1/3 is a pivotal enzyme of this family that participates in the proteolytic maturation of prohormones and neuropeptides inside the regulated secretory pathway. In this paper we demonstrate that mouse proprotein convertase 1/3 (mPC1/3) has a lag phase of activation by substrates that can be interpreted as a hysteretic behavior of the enzyme for their hydrolysis. This is an unprecedented observation in peptidases, but is frequent in regulatory enzymes with physiological relevance. The lag phase of mPC1/3 is dependent on substrate, calcium concentration and pH. This hysteretic behavior may have implications in the physiological processes in which PC1/3 participates and could be considered an additional control step in the peptide hormone maturation processes as for instance in the transformation of proinsulin to insulin.  相似文献   

6.
A member of the A disintegrin and metalloproteinase domain with thrombospondin type-1 motifs (ADAMTS-4) protease family can efficiently cleave aggrecan at several sites detected in joints of osteoarthritic patients. Although recent studies have shown that removal of the prodomain of ADAMTS4 is critical for its ability to degrade aggrecan, the cellular mechanisms for its processing and trafficking remain unclear. In this study, by using both furin-specific inhibitor and RNA interference technique, we demonstrate that furin plays an important role in the intracellular removal of ADAMTS4 prodomain. Further, we demonstrate that proADAMTS4 can be processed by means of multiple furin recognition sites: (206)RPRR(209), (209)RAKR(212), or (211)KR(212). The processing of proADAMTS4 was completely blocked by brefeldin A treatment, suggesting that processing occurs in the trans-Golgi network. Indeed, ADAMTS4 is co-localized with furin in trans-Golgi network. Interestingly, the pro form of ADAMTS4, not its mature one, co-precipitates with furin, suggesting that furin physically interacts with the prodomain of ADAMTS-4. In addition, our evidence suggests that a furin-independent pathway may also contribute to the activation of ADAMTS4. These results indicate that the activation mechanism for ADAMTS4 can be targeted for therapeutical intervention against this enzyme.  相似文献   

7.
8.
Processing of precursor proteins by the proprotein convertases is thought to occur mainly in the trans-Golgi network or post-Golgi compartments. Such cleavage is inhibited by the prosegment of the convertases. During our studies of the use of the inhibitory prosegment of PC1, we noticed that a construct containing the prosegment fused to the C-terminal secretory granule sorting domain was cleaved in the endoplasmic reticulum (ER) at a pair of basic residues, best recognized by furin and PC7. This was further confirmed when this construct was fused at the C-terminus with a KDEL ER-retention signal. This suggests that the convertases could cleave some substrates within the ER, possibly by displacing the inhibitory prosegment associated with them.  相似文献   

9.
10.
Furin is an endoprotease of the family of mammalian proprotein convertases and is involved in the activation of a large variety of regulatory proteins by cleavage at basic motifs. A large number of substrates have been attributed to furin on the basis of in vitro and ex vivo data. However, no physiological substrates have been confirmed directly in a mammalian model system, and early embryonic lethality of a furin knock-out mouse model has precluded in vivo verification of most candidate substrates. Here, we report the generation and characterization of an interferon inducible Mx-Cre/loxP furin knock-out mouse model. Induction resulted in near-complete ablation of the floxed fur exon in liver. In sharp contrast with the general furin knock-out mouse model, no obvious adverse effects were observed in the transgenic mice after induction. Histological analysis of the liver did not reveal any overt deviations from normal morphology. Analysis of candidate substrates in liver revealed complete redundancy for the processing of the insulin receptor. Variable degrees of redundancy were observed for the processing of albumin, alpha(5) integrin, lipoprotein receptor-related protein, vitronectin and alpha(1)-microglobulin/bikunin. None of the tested substrates displayed a complete block of processing. The absence of a severe phenotype raises the possibility of using furin as a local therapeutic target in the treatment of pathologies like cancer and viral infections, although the observed redundancy may require combination therapy or the development of a more broad spectrum convertase inhibitor.  相似文献   

11.
This review is devoted to structure and properties of proprotein convertases (PCs), the intracellular Ca(2+)-dependent serine endoproteases of mammalia, that play the essential role in the processing of inactive protein precursors and their transforming into bioactive mature products. PCs are also implicated in development of a great variety of diseases including bacterial or viral infections and such pathologies as cancer, Alzheimer's disease, obesity and so on. Owing to these findings, PCs are considered as promising targets for design of their inhibitors and development of new potential therapeutic agents. Only several endogenous protein inhibitors are identified now for PCs: pro7B2 (Proprotein 7B2), the specific chaperon of PC2, granine-like precursor of neuroendocrine protein proSAAS, the selective ligand of PC1, and serpin Spn4A (Serine Proteinase Inhibitor) of Drosophila melanogaster that inhibits PC2 and furin. By the methods of site-directed mutagenesis, the bioengineered inhibitors of PCs were also designed. Structures and properties of protein or peptide fragments as inhibitors of PCs were also discussed. Particularly, the properties of polyarginines and small peptides containing pseudopeptide bond at the scissile site a suitable peptide substrate were described. The inhibitory activity of non-peptide compounds such as derivatives of andrographolid from Andrographis paniculata (K(i) = 2.6-200 microM against furin), certain complexes of pyridine analogs with ions of Cu2+ or Zn2+ inhibiting furin with IC50 = 5-10 microM, derivatives of 2,5-dideoxy-streptamine containing several guanidine groups (K(i) = 6-812 nM for furin) and also a number of dicoumarols (K(i) = 1-185 microM against furin) and some flavonoids (with K(i) = 5-230 microM for furin) were reflected in the article. The effects of enediynyl-amino acids derivatives or their peptides (K(i) = 40 nM against furin) were considered. Inhibition of PC2 by N-acylated bicyclic guanidines (K(i) = 3.3-10 microM) or derivatives of pyrrolidin bispyperazines (K(i) = 0.54-10 microM) are considered too. Some of synthesized derivatives may serve as lead compounds for design of the specific inhibitors for individual PCs.  相似文献   

12.
Furin, the mammalian prototype of a family of serine proteases, is required for ventral closure and axial rotation, and formation of the yolk sac vasculature. Here we show additionally that left-sided expression of pitx2 and lefty-2 are also perturbed in Furin-deficient embryos. These tissue abnormalities are preceded by a marked delay in the expansion of the definitive endoderm during gastrulation. Using a chimera approach, we show that Furin activity is required in epiblast derivatives, including the primitive heart, gut and extraembryonic mesoderm, whereas it is nonessential in the visceral endoderm. Thus, chimeric embryos, derived by injecting wild-type embryonic stem (ES) cells into fur(-/-) blastocysts, develop normally until at least 9.5 d.p.c. In contrast, Furin-deficient chimeras developing in the context of wild-type visceral endoderm fail to undergo ventral closure, axial rotation and yolk sac vascularization. Fur(-/-) cells are recruited into all tissues examined, including the yolk sac vasculature and the midgut, even though these structures fail to form in fur mutants. The presence of wild-type cells in the gut strikingly correlates with the ability of chimeric embryos to undergo turning. Overall, we conclude that Furin activity is essential in both extraembryonic and precardiac mesoderm, and in definitive endoderm derivatives.  相似文献   

13.
Serum GP73 levels are significantly increased in patients with hepatocellular carcinoma (HCC), potentially providing a marker for early detection. However, GP73 is an integral membrane protein localized to the cis Golgi and is not known to be secreted. Based on its presence in sera, we sought to determine whether GP73 might normally be released from cells and to elucidate the mechanism of this release. Indeed, a soluble form of GP73 was released from cultured cells and compared with the Golgi-localized full-length protein, the molecular weight was slightly reduced, suggesting that cleavage releases the GP73 ectodomain. Sequence analysis revealed a proprotein convertase (PC) consensus site, and, indeed, the ubiquitous PC furin was capable of cleaving purified GP73. Further, alanine substitutions in the PC site blocked both the in vitro and the in vivo cleavage of GP73. Using a cleavage-specific antibody, cleaved GP73 was found in the trans Golgi network and endosomes, suggesting that GP73 cleavage occurs as GP73 cycles distal to the early Golgi. We conclude that the endosomal trafficking of GP73 allows for PC-mediated cleavage, resulting in GP73 secretion, and provides a molecular mechanism for its presence as a serum biomarker for HCC.  相似文献   

14.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is the most recently identified member of the proprotein convertase family. Genetic and cell biology studies have suggested a critical role of PCSK9 in regulating low-density lipoprotein receptor (LDLR) protein levels and thus modulating plasma LDL cholesterol. Recent data on the molecular basis for PCSK9 action support the model in which PCSK9 is self-cleaved, secreted, and tightly bound to the EGF-A repeat of LDLR extracellular domain. PCSK9 binding to LDLR is essential for the ensuing receptor-mediated endocytosis and is speculated to lock LDLR in a specific conformation that favors degradation in lysosomal compartment instead of recycling back to plasma membrane. We report here a novel human PCSK9 splicing variant, which we named PCSK9sv. PCSK9sv had an in-frame deletion of the eighth exon of 58 amino acids and was expressed in multiple tissues, including liver, small intestine, prostate, uterus, brain, and adipose tissue. Unlike wild-type PCSK9, which is secreted, PCSK9sv expressed in human embryonic kidney HEK293 cells failed to process the prosegment intracellularly and thus was not secreted into the medium. Examination of potential functions revealed that PCSK9sv did not change the LDLR protein levels. Two mutations that have been reported in humans with the associated changes in plasma LDL cholesterol were within exon 8, and thus the expression and function of the two mutants were studied. Both N425S and A443T mutants were processed normally, secreted, and reduced LDLR levels. However, the physiological function of this novel splicing variant of PCSK9 has yet to be determined.  相似文献   

15.
Prohormone convertase 1 (PC1), mediating the proteolytic processing of neural and endocrine precursors, is thought to be regulated by the neuroendocrine protein proSAAS. The PC1 inhibitory sequence is mostly confined within a 10-12-amino acid segment near the C terminus of the conserved human proSAAS and contains the critical KR(244) dibasic motif. Our results show that the decapeptide proSAAS-(235-244)( 235)VLGALLRVKR(244) is the most potent reversible competitive PC1-inhibitor (K(i) approximately 9 nm). The C-terminally extended proSAAS-(235-246) exhibits a 5-6-fold higher K(i) ( approximately 51 nm). The additional LE sequence at P1'-P2', resulted in a competitive substrate cleaved by PC1 at KR(244) downward arrowLE(246). Systematic alanine scanning and in some cases lysine scanning tested the contribution of each residue within proSAAS-(235-246) toward the PC1-inhibition's specificity and potency. The amino acids P1 Arg, P2 Lys, and P4 Arg are all critical for inhibition. Moreover, the aliphatic P3 Val and P5, P6, and P1' Leu significantly affect the degree of enzyme inactivation and PC1 specificity. Interestingly, a much longer N- and C-terminally extended endogenous rat proSAAS-(221-254) called little PenLen, was found to be a 3-fold less potent PC1 inhibitor with reduced selectivity but a much better substrate than proSAAS-(235-246). Molecular modeling studies and circular dichroism analysis indicate an extended and poly-l-proline II type structural conformation for proSAAS-(235-244), the most potent PC1 inhibitor, a feature not present in poor PC1 inhibitors.  相似文献   

16.
17.
Significant advances have recently been made in our understanding of the mechanisms of activation of proteins that require processing. Often this involves endoproteolytic cleavage of precursor forms at basic residues, and is carried out by a group of serine endoproteinases, termed the proprotein convertases. In mammals, seven different convertases have been identified to date. These act in both the regulated secretory pathway for the processing of prohormones and proneuropeptides and in the constitutive secretory pathway, in which a variety of proproteins are activated endoproteolytically. The recently completed sequence of the nematode Caenorhabditis elegans genome affords a unique opportunity to examine the entire proprotein convertase family in a multicellular organism. Here we review the nature of the family, emphasising the structural features, characteristic of the four nematode genes, that supply all of the necessary functions unique to this group of serine endoproteinases. Studies of the C. elegans genes not only provide important information about the evaluation of this gene family but should help to illuminate the roles of these proteins in mammalian systems. BioEssays 22:545-553, 2000.  相似文献   

18.
The Golgi apparatus (GA) is the organelle where complex glycan formation takes place. In addition, it is a major sorting site for proteins destined for various subcellular compartments or for secretion. Here we investigate beta1,4-galactosyltransferase 1 (galT) and alpha2,6-sialyltransferase 1 (siaT), two trans-Golgi glycosyltransferases, with respect to their different pathways in monensin-treated cells. Upon addition of monensin galT dissociates from siaT and the GA and accumulates in swollen vesicles derived from the trans-Golgi network (TGN), as shown by colocalization with TGN46, a specific TGN marker. We analyzed various chimeric constructs of galT and siaT by confocal fluorescence microscopy and time-lapse videomicroscopy as well as Optiprep density gradient fractionation. We show that the first 13 amino acids of the cytoplasmic tail of galT are necessary for its localization to swollen vesicles induced by monensin. We also show that the monensin sensitivity resulting from the cytoplasmic tail can be conferred to siaT, which leads to the rapid accumulation of the galT-siaT chimera in swollen vesicles upon monensin treatment. On the basis of these data, we suggest that cycling between the trans-Golgi cisterna and the trans-Golgi network of galT is signal mediated.  相似文献   

19.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is associated with familial autosomal dominant hypercholesterolemia and is a natural inhibitor of the LDL receptor (LDLr). PCSK9 is degraded by other proprotein convertases: PC5/6A and furin. Both PCSK9 and the LDLr are up-regulated by the hypocholesterolemic statins. Thus, inhibitors or repressors of PCSK9 should amplify their beneficial effects. In the present study, we showed that PPARalpha activation counteracts PCSK9 induction by statins by repressing PCSK9 promoter activity and by increasing PC5/6A and furin expression. Quantification of mRNA and protein levels showed that various fibrates decreased PCSK9 and increased PC5/6A and furin expression. Fenofibric acid (FA) reduced PCSK9 protein content in immortalized human hepatocytes (IHH) as well as its cellular secretion. FA suppressed PCSK9 induction by statins or by the liver X receptor agonist TO901317. PCSK9 repression is occurring at the promoter level. We showed that PC5/6A and furin fibrate-mediated up-regulation is PPARalpha-dependent. As a functional test, we observed that FA increased by 30% the effect of pravastatin on the LDLr activity in vitro. In conclusion, fibrates simultaneously decreased PCSK9 expression while increasing PC5/6A and furin expression, indicating a broad action of PPARalpha activation in proprotein convertase-mediated lipid homeostasis. Moreover, this study validates the functional relevance of a combined therapy associating PCSK9 repressors and statins.  相似文献   

20.
The significance of furin in the maturation and activation of a wide array of proproteins in the secretory pathway has been well demonstrated. However, despite efforts made to characterize the subcellular locations where furin activates its substrates, doubts on the proprotein-processing compartments still persist. Using in vivo gene delivery, together with high-resolution immunogold electron microscopy, we were able to assign precise subcellular locations to furin. In rat hepatocyte, the enzyme was found concentrated in the Golgi apparatus, along the basolateral (sinusoidal) plasma membrane and in underlying endosomes. An asymmetry was detected in respect to amounts of furin between the basolateral domain and the apical (canalicular) one, favoring the former. The asymmetric recycling of furin through the basolateral domain may be of high importance for the polarized secretion of processed bioactive compounds. Double immunogold labelings indicate that furin colocalizes with the caveolae/raft-marker caveolin-1 in the Golgi apparatus and in the basolateral endosomes. Furthermore, co-immunoprecipitation experiments show the possible interaction of caveolin-1 and furin. Our results suggest that, in addition to the Golgi, furin-/caveolin-1-containing endosomes could represent a compartment where furin processes its substrates at the basolateral domain of the hepatocyte.This work was supported by grants from the Canadian Institutes of Health Research (CIHR) to M.B. (MOP9702) and to G.B. (NFR13052). This article represents part of the work required for the fulfillment of the PhD program of G.M., who is supported in part by studentships from the CIHR, the University of Montreal and Novartis Pharma Canada  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号