首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
During postnatal development, gamma-glutamyl transpeptidase (gamma-GT), reduced glutathione (GSH), and L-glutamic acid (L-Glu) were assayed in the epididymides of rats at 5-day intervals between 10 and 60 days of age and compared to adult levels. gamma-GT activity (with gamma-glutamyl-p-nitroanilide as substrate) and L-Glu (nicotinamide adenine dinucleotide conversion-dependent assay) were measured photometrically, while GSH (o-phthalaldehyde reaction) was quantified with a fluorometric assay. In immature rats, the epididymal gamma-GT was very low but increased after 25 days of age in the caput and after 50 days of age in the cauda. The enzyme level in the epididymal caput was by far the highest in the adult rat reproductive tissues. The postnatal increase of gamma-GT in epididymal caput and cauda was associated with a decline of its substrate GSH and an accumulation of the product L-Glu. These observations provide evidence for the in vivo hydrolytic activity of gamma-GT and explain the high levels of L-Glu found in the epididymis of rats and other mammals.  相似文献   

2.
Previous studies from this laboratory have established that acquired resistance of murine L1210 leukemia cells to L-phenylalanine mustard (L-PAM) and other alkylating agents is accompanied by a two-to threefold elevation in their glutathione (GSH) concentration (Biochem. Pharm. 31:121). In an attempt to gain insight into the mechanism by which resistant tumor cells maintain their increased GSH content, we have assessed the possible role of gamma-glutamyl transpeptidase (gamma-GT), a membrane bound enzyme involved in GSH metabolism. These results indicate that the enzyme is present in both sensitive and resistant murine L1210 leukemia cells but that the cellular content of gamma-GT is elevated two-to threefold in L-PAM resistant cells as compared to their sensitive counterparts. This elevation in enzymatic activity correlates well with the increased cellular GSH content in resistant cells. The results of a detailed kinetic analysis of gamma-GT activity indicate that there is no difference, between cell types, in the apparent Km of the enzyme for the gamma-glutamyl donor (L-gamma-glutamyl-p-nitroanilide) or the acceptor (glycylglycine). However, the apparent Vmax is increased two-to threefold in L-PAM resistant tumor cells. Investigation into the role of gamma-GT in the extracellular metabolism of GSH indicates that resistant tumor cells metabolize two-fold more GSH than do sensitive cells and that such metabolism results in a similar difference in the intracellular concentration of cysteine. Results of studies with cellular lysates also indicate a role for the enzyme in the supply of cysteine to the glutathione precursor pool of the tumor cell and in the maintenance of elevated GSH concentrations in cells resistant to alkylating agents.  相似文献   

3.
This work aims to elucidate the relationship between nitrogen depletion and Glutathione (GSH) level in Schizosaccharomyces pombe. The total GSH level was much higher in the Pap1-positive KP1 cells than in the Pap1-negative TP108-3C cells, suggesting that synthesis of GSH is dependent on Pap1. When the Pap1-positive KP1 cells were transferred to the nitrogen-depleted medium, total GSH level significantly increased up to 6 h and then slightly declined after 9 h. Elevation of the total GSH level was observed to be much less with the Pap1-negative cells. However, glucose deprivation was not able to enhance the GSH level in the KP1 cells. Activity of gamma-glutamyltranspeptidase (gamma-GT), an enzyme in the first step of GSH catabolism, also increased during nitrogen depletion. The total GSH level was more significantly enhanced in the KP1 cells overexpressing gamma-GT2 than gamma-GT1 during nitrogen starvation. Reactive oxygen species (ROS) levels were not changed during nitrogen starvation in both Pap1-positive and Pap1-negative cells. Collectively, nitrogen depletion causes up-regulation of GSH synthesis and gamma-GT in a Pap1-dependent manner.  相似文献   

4.
Astrocytes play a pivotal role in CNS detoxification pathways, where glutathione (GSH) is involved in the elimination of oxygen and nitrogen reactive species such as nitric oxide. We have previously demonstrated that the specific activity of gamma-glutamyl transpeptidase (gamma-GT), an enzyme of central significance in GSH metabolism, is regulated in vivo in astrocytes by 1,25-dihydroxyvitamin D3 (1,25-D3). The aim of the present work was to investigate, in primary cultures of newborn rat astrocytes, the effects of this hormone on gamma-GT synthesis and on GSH and nitrite levels after lipopolysaccharide (LPS) treatment. This study demonstrates that both gamma-GT gene expression and specific activity, induced by LPS, are potentiated by 1,25-D3. In contrast, 1,25-D3 does not regulate the expression of other enzymes involved in astrocyte detoxification processes, such as superoxide dismutase or GSH peroxidase. In parallel, 1,25-D3 enhanced intracellular GSH pools and significantly reduced nitrite production induced by LPS. Taken together, these results suggest that gamma-GT, GSH, and 1,25-D3 play a fundamental role in astrocyte detoxification pathways.  相似文献   

5.
gamma-Glutamyl transpeptidase (GGT) is the enzyme responsible for breaking the gamma-glutamyl bond between Glu and Cys in glutathione (GSH). We are using this gene family to study GSH degradation in plants. There are four putative GGT genes in Arabidopsis, and one of them, GGT3 (At4g29210), is analyzed in this study. GGT3 is localized to the vacuole based on organelle-targeting programs, subcellular distribution of GFP fusion proteins during transient expression in onion (Allium cepa) epidermal tissues, and its ability to metabolize vacuolar substrates in Arabidopsis plants. While Northern blots and promoter:GUS expression patterns have suggested that GGT3 is transcribed at relatively high levels in all parts of the plant, a comparison of enzyme activities in different organs of wild-type and a ggt3 knockout mutant showed that GGT3 was a major contributor to total GGT activity in roots, but a relatively minor contributor in other tissues. Wild-type Arabidopsis plants treated with monobromobimane (mBB) form a fluorescent GSH-mBB conjugate that is moved into the vacuole and then metabolized to Cys-Gly-mBB and Cys-mBB in that order. The first step is catalyzed by GGT3, and GSH-mBB metabolism is completely blocked in the roots of ggt3 knockout plants. In ggt3 leaves, some GSH-mBB metabolism still proceeds using the apoplastic GGT1. This identifies GGT3 as catalyzing the obligate initial step in GSH conjugate metabolism, and suggests that it has an important role in protecting plants from some xenobiotic chemicals.  相似文献   

6.
7.
gamma-Glutamyl transpeptidase (gamma-GT), its substrate (GSH) and hydrolytic product (L-glutamic acid) were measured biochemically in mouse reproductive tissues. The epididymal caput and seminal vesicles showed the highest specific activities of gamma-GT, while GSH and L-glutamic acid were widely distributed in all tissues. Histochemically, gamma-GT displayed a strong apical and supranuclear reaction and a moderate basal activity in the ductuli efferents, a weak luminal reaction in the first, a moderate apical reaction in the second and a strong apical and supranuclear reaction in the third segment of the epididymal caput. In the epididymal corpus and cauda, the gamma-GT reaction was confined to the tubular lumina but an apical reaction was also present in the cauda. The daily administration of acivicin (12 mg/kg body weight), an irreversible inhibitor of gamma-GT, for 14 days resulted in a 60% suppression of the enzyme activity in the epididymal caput, while the gamma-GT inhibition in the kidney was greater than 95%. The treatment caused no change in the activity of alanyl aminopeptidase. Histochemically, the basal and supranuclear gamma-GT activities in the ductuli efferents and the third epididymal segment were suppressed, but the apical reactions were maintained. The in-vivo suppression of epididymal gamma-GT activity may have implications in the control of post-testicular sperm maturation.  相似文献   

8.
The membrane bound gamma-glutamyltransferase (gamma-GT) is capable of utilizing both glutathione, GSH, and glutamine, gln, as the natural gamma-glutamyl donor. The enzyme is oriented in the membrane to react with extracellular substrates and is present on both the brush border and peritubular capillaries. The reaction catalyzed by gamma-GT is critically dependent upon the ratio of gamma-glutamyl donor/gamma-GT which under near physiological conditions results in the formation of gamma-glutamyl peptide and glu on the blood and urine side respectively; this effectively establishes an osmotic gradient which could contribute to transepithelial and transcapillary water fluxes. Interestingly, utilization of extrarenal gamma-glutamyl substrates are quantitatively more significant in the microvascular than brush border location. Delivery of gln to these enzymes sites is some 20 times greater than GSH. Gln utilization unlike GSH is limited by the reaction with the gamma-glutamyl donor site; thus reactivity is greatly enhanced by the maleate like activator hippurate which may account for the acidosis-induced adaptation in ammonia formation from gln by this enzyme. Coupled to a role in ammoniagenesis the brush border enzyme appears to play a role in the reabsorption of filtered gln. The hydrolysis of filtered GSH as well as its utilization in transfer reactions involved in amino acid reabsorption at the brush border may reflect the role of the enzyme in eliminating osmotically active solutes from the urine and thereby facilitating water fluxes. However the role of gln as a gamma-glutamyl donor relative to GSH will depend upon the quantitative significance of tubular GSH synthesis and secretion.  相似文献   

9.
The role of gamma-glutamyltransferase (gamma-GT) in renal ammoniagenesis, glutamine (Gln), and glutathione (GSH) utilization was evaluated in the intact functioning rat kidney of subtotal nephrectomy (SNX) model of chronic renal failure (CRF). NH4+ derived from extracellular gamma-GT hydrolysis of Gln and GSH was differentiated from the intramitochondrial phosphate-dependent glutaminase by using acivicin, a gamma-GT-specific inhibitor. In the control (C) group Gln extraction accounted for 61% of total NH4+ production (sum of renal venous and urinary NH4+), but only 41% in SNX group. In the SNX group GSH extraction accounted for 10% of total NH4+ production, but only 1% in the C group. Acivicin inhibited 44% and 33% of total NH4+ production in SNX and C group respectively, as compared to baseline before acivicin. In CRF, gamma-GT a key enzyme of the gamma-glutamyl cycle plays a significant role in adaptive ammoniagenesis.  相似文献   

10.
Glutathione (GSH)-dependent formaldehyde dehydrogenase (FALDH) is a highly conserved medium-chain dehydrogenase reductase and the main enzyme that metabolizes intracellular formaldehyde in eukaryotes. It has been recently shown that it exhibits a strong S-nitrosoglutathione (GSNO) reductase activity and could be a candidate to regulate NO-signalling functions. However, there is a lack of knowledge about the tissue distribution of this enzyme in plants. Here, we have studied the localization and developmental expression of the enzyme using immunolocalization and histochemical activity assay methods. We conclude that FALDH is differentially expressed in the organs of Arabidopsis thaliana mature plants, with higher levels in roots and leaves from the first stages of development. Spatial distribution of FALDH in these two organs includes the main cell types [epidermis (Ep) and cortex (Cx) in roots, and mesophyll in leaves] and the vascular system. Arabidopsis thaliana mutants with modified levels of FALDH (both by over- and under-expression of the FALDH-encoding gene) show a significant reduction of root length, and this phenotype correlates with an overall decrease of intracellular GSH levels and alteration of spatial distribution of GSH in the root meristem. Tansgenic roots are partially insensitive to exogenous GSH, suggesting an inability to detect reduction-oxidation (redox) changes of the GSH pool and/or maintain GSH homeostasis.  相似文献   

11.
Glutathione (GSH) homeostasis in plants is essential for cellular redox control and efficient responses to abiotic and biotic stress. Compartmentation of the GSH biosynthetic pathway is a unique feature of plants. The first enzyme, γ-glutamate cysteine ligase (GSH1), responsible for synthesis of γ-glutamylcysteine (γ-EC), is, in Arabidopsis, exclusively located in the plastids, whereas the second enzyme, glutathione synthetase (GSH2), is located in both plastids and cytosol. In Arabidopsis, gsh2 insertion mutants have a seedling lethal phenotype in contrast to the embryo lethal phenotype of gsh1 null mutants. This difference in phenotype may be due to partial replacement of GSH functions by γ-EC, which in gsh2 mutants hyperaccumulates to levels 5000-fold that in the wild type and 200-fold wild-type levels of GSH. In situ labelling of thiols with bimane and confocal imaging in combination with HPLC analysis showed high concentrations of γ-EC in the cytosol. Feedback inhibition of Brassica juncea plastidic GSH1 by γ-EC in vitro strongly suggests export of γ-EC as functional explanation for hyperaccumulation. Complementation of gsh2 mutants with the cytosol-specific GSH2 gave rise to phenotypically wild-type transgenic plants. These results support the conclusion that cytosolic synthesis of GSH is sufficient for plant growth. The transgenic lines further show that, consistent with the exclusive plastidic localization of GSH1, γ-EC is exported from the plastids to supply the cytosol with the immediate precursor for GSH biosynthesis, and that there can be efficient re-import of GSH into the plastids to allow effective control of GSH biosynthesis through feedback inhibition of GSH1.  相似文献   

12.
The localization of gamma-Glutamyltransferase (gamma-GT, E.C.2.3.2.2) was studied on isolated tubular fragments from rat kidney cortex immunocytochemically. Monospecific antibodies raised in the goat against rat kidney gamma-GT were used. Antigoat immunoglobulin from the rabbit conjugated with ferritin was used for visualisation of the antibody binding sites. The enzyme was found to be localized at the brush border membrane of proximal tubules, the luminal membrane of distal tubules and collecting duct segments. The enzyme could further be localized on the antiluminal or basolateral cell membranes of proximal and distal tubular fragments, whereas no such localization was verified for collecting duct segments. The role of this basolateral gamma-GT localization in context with the kidney's ability to extract over 83% of the renal arterial glutathione (GSH) input during a single passage is discussed.  相似文献   

13.
Mechanism and relevance of glutathione mutagenicity   总被引:2,自引:0,他引:2  
The ubiquitous tripeptide glutathione (GSH) has previously been shown to be mutagenic to Salmonella typhimurium TA100 when incubated with kidney subcellular fractions at physiological concentrations (Glatt et al., 1983). Here we report that the mutagenic effect of GSH can be inhibited by the use of the gamma-glutamyl-transpeptidase (gamma-GT) inhibitor anthglutin and by the metal chelators bathocuproine, EDTA and diethyldithiocarbamate. As the chelating agents did not inhibit gamma-GT activity this suggested that the mechanism underlying the mutagenic effect of GSH was at least a two-step process, dependent upon the cleavage of GSH by gamma-GT and the presence of either free transition metals or those contained in enzymes such as glutathione oxidase. As gamma-GT is located on the outer surface of kidney tubule cells and is therefore exposed to relatively low concentrations of GSH, and the precise physiological control of levels of transition metals, this mechanism is unlikely to occur in vivo.  相似文献   

14.
Glutathione-deficient mutants (gshA) of the yeast Saccharomyces cerevisiae, impaired in the first step of glutathione (GSH) biosynthesis were studied with respect to the regulation of enzymes involved in GSH catabolism and cysteine biosynthesis. Striking differences were observed in the content of the sulphur amino acids when gshA mutants were compared to wild-type strains growing on the same minimal medium. Furthermore, all mutants examined showed a derepression of gamma-glutamyltranspeptidase (gamm-GT), the enzyme initiating GSH degradation. However, gamma-cystathionase and cysteine synthase were unaffected by the GSH deficiency as long as the nutrient sulphate source was not exhausted. The results suggest that the mutants are probably not impaired in the sulphate assimilation pathway, but that the gamma-glutamyl cycle could play a leading role in the regulation of the sulphur fluxes. Studies of enzyme regulation showed that the derepression of gamma-GT observed in the gshA strains was most probably due to an alteration of the thiol status. The effectors governing the biosynthesis of cysteine synthase and gamma-cystathionase seemed different from those playing a role in gamma-GT regulation and it was only under conditions of total sulphate deprivation that all these enzymes were derepressed. As a consequence the endogenous pool of GSH was used in the synthesis of cysteine. GSH might, therefore, fulfil the role of a storage compound.  相似文献   

15.
We previously reported that injection of bacterial lipopolysaccharide (LPS) into gravid female rats at embryonic day 10.5 resulted in a birth of offspring with fewer than normal dopamine (DA) neurons along with innate immunity dysfunction and many characteristics seen in Parkinson's disease (PD) patients. The LPS-exposed animals were also more susceptible to secondary toxin exposure as indicated by an accelerated DA neuron loss. Glutathione (GSH) is an important antioxidant in the brain. A disturbance in glutathione homeostasis has been proposed for the pathogenesis of PD. In this study, animals prenatally exposed to LPS were studied along with an acute intranigral LPS injection model for the status of glutathione homeostasis, lipid peroxidation, and related enzyme activities. Both prenatal LPS exposure and acute LPS injection produced a significant GSH reduction and increase in oxidized GSH (GSSG) and lipid peroxide (LPO) production. Activity of gamma-glutamylcysteine synthetase (GCS), the rate-limiting enzyme in de novo GSH synthesis, was up-regulated in acute supranigral LPS model but was reduced in the prenatal LPS model. The GCS light subunit protein expression was also down-regulated in prenatal LPS model. GSH redox recycling enzyme activities (glutathione peroxidase, GPx and glutathione reducdase, GR) and glutathione-S-transferase (GST), gamma-glutamyl transpeptidase (gamma-GT) activities were all increased in prenatal LPS model. Prenatal LPS exposure and aging synergized in GSH level and GSH-related enzyme activities except for those (GR, GST, and gamma-GT) with significant regional variations. Additionally, prenatal LPS exposure produced a reduction of DA neuron count in the substantia nigra (SN). These results suggest that prenatal LPS exposure may cause glutathione homeostasis disturbance in offspring brain and render DA neurons susceptible to the secondary neurotoxin insult.  相似文献   

16.
Primary culture rat astrocytes exposed to the long acting nitric oxide donor (Z)-1-[2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO) for 24 h approximately double their concentration of glutathione (GSH) and show no sign of cell death. In contrast, GSH was depleted by 48%, and significant loss of mitochondrial respiratory chain complex activity and cell death were observed in primary culture rat neurones subjected to DETA-NO for 18 h. Northern blot analysis suggested that mRNA amounts of both subunits of glutamate-cysteine ligase (GCL), the rate-limiting enzyme in GSH synthesis, were elevated in astrocytes following nitric oxide (NO) exposure. This correlated with an increase in astrocytic GCL activity. Neurones on the other hand did not exhibit increased GCL activity when exposed to NO. In addition, the rate of GSH efflux was doubled and gamma-glutamyltranspeptidase (gamma-GT) activity was increased by 42% in astrocytes treated with NO for 24 h. These results suggest that astrocytes, but not neurones, up-regulate GSH synthesis as a defence mechanism against excess NO. It is possible that the increased rate of GSH release and activity of gamma-GT in astrocytes may have important implications for neuroprotection in vivo by optimizing the supply of GSH precursors to neurones in close proximity.  相似文献   

17.
Detoxification of xenobiotic compounds and heavy metals is a pivotal capacity of organisms, in which glutathione (GSH) plays an important role. In plants, electrophilic herbicides are conjugated to the thiol group of GSH, and heavy metal ions form complexes as thiolates with GSH-derived phytochelatins (PCs). In both detoxification processes of plants, phytochelatin synthase (PCS) emerges as a key player. The enzyme is activated by heavy metal ions and catalyzes PC formation from GSH by transferring glutamylcysteinyl residues (gamma-EC) onto GSH. In this study with Arabidopsis, we show that PCS plays a role in the plant-specific catabolism of glutathione conjugates (GS-conjugates). In contrast to animals, breakdown of GS-conjugates in plants can be initiated by cleavage of the carboxyterminal glycine residue that leads to the generation of the corresponding gamma-EC-conjugate. We used the xenobiotic bimane in order to follow GS-conjugate turnover. Functional knockout of the two PCS of Arabidopsis, AtPCS1 and AtPCS2, revealed that AtPCS1 provides a major activity responsible for conversion of the fluorescent bimane-GS-conjugate (GS-bimane) into gamma-EC-bimane. AtPCS1 deficiency resulted in a gamma-EC-bimane deficiency. Transfection of PCS-deficient cells with AtPCS1 recovered gamma-EC-bimane levels. The level of the gamma-EC-bimane conjugate was enhanced several-fold in the presence of Cd2+ ions in the wild type, but not in the PCS-deficient double mutant, consistent with a PCS-catalyzed GS-conjugate turnover. Thus AtPCS1 has two cellular functions: mediating both heavy metal tolerance and GS-conjugate degradation.  相似文献   

18.
Inhibitors for glutathione S-transferase (GST) iso-enzymes from rat liver with high affinity for the glutathione-binding site (G-site) have been developed. In previous studies, a model was described for the G-site of GST (Adang, A. E. P., Brussee, J., van der Gen, A., and Mulder, G. J. (1990) Biochem. J. 269, 47-54) in terms of essential and nonessential interactions between groups in glutathione (GSH) and the G-site. Based on this model, compounds were designed that have high affinity for the G-site but cannot be conjugated. In the dipeptide gamma-L-glutamyl-D-aminoadipic acid (gamma-L-Glu-D-Aad), the L-cysteinylglycine moiety is replaced by D-aminoadipic acid. This dipeptide is an efficient competitive inhibitor (toward GSH) of mu class GST isoenzymes with Ki values of 34 microM for GST isoenzyme 3-3 and 8 microM for GST isoenzyme 4-4. Other GSH-dependent enzymes, such as gamma-glutamyl transpeptidase (gamma-GT), glutathione reductase, and glutathione peroxidase, were not inhibited by 1 mM of gamma-L-Glu-D-Aad. Inhibition is also highly stereospecific since gamma-L-Glu-L-Aad is only a poor inhibitor (Ki = 430 microM for GST 3-3). Gamma-L-Glutamyl-D-norleucine also had a much higher Ki value for GST 3-3. Thus, the presence of a delta-carboxylate group in D-Aad appears to be essential for a high affinity inhibitor. An additional hydrophobic group did not result in increased inhibitory potency. In a different approach, the gamma-L-glutamyl moiety in GSH was replaced by delta-L-aminoadipic acid; delta-L-Aad-L-Cys-Gly is an efficient cosubstrate analogue for GSTs with Km values comparable to GSH and Vmax values ranging from 0.24 to 57 mumol/min/mg for the different GSTs. The structures of the efficient inhibitor and the cosubstrate analogue were combined in delta-L-Aad-D-Aad, which had a Ki value of 68 microM with GST 3-3. In order to investigate their possible use in vivo studies, the degradation of gamma-L-Glu-D-Aad and delta-L-Aad-L-Cys-Gly by gamma-GT was investigated. The peptides showed no measurable hydrolysis rates under conditions where GSH was rapidly hydrolyzed. Thus, an efficient, mu class-specific GST inhibitor and a gamma-glutamyl-modified cosubstrate analogue of GSH were developed. Their gamma-GT stability offers the possibility to use these peptides in in vivo experiments.  相似文献   

19.
Although glutathione S-transferases (GSTs) are thought to play major roles in oxidative stress metabolism, little is known about the regulatory functions of GSTs. We have reported that Arabidopsis (Arabidopsis thaliana) GLUTATHIONE S-TRANSFERASE U17 (AtGSTU17; At1g10370) participates in light signaling and might modulate various aspects of development by affecting glutathione (GSH) pools via a coordinated regulation with phytochrome A. Here, we provide further evidence to support a negative role of AtGSTU17 in drought and salt stress tolerance. When AtGSTU17 was mutated, plants were more tolerant to drought and salt stresses compared with wild-type plants. In addition, atgstu17 accumulated higher levels of GSH and abscisic acid (ABA) and exhibited hyposensitivity to ABA during seed germination, smaller stomatal apertures, a lower transpiration rate, better development of primary and lateral root systems, and longer vegetative growth. To explore how atgstu17 accumulated higher ABA content, we grew wild-type plants in the solution containing GSH and found that they accumulated ABA to a higher extent than plants grown in the absence of GSH, and they also exhibited the atgstu17 phenotypes. Wild-type plants treated with GSH also demonstrated more tolerance to drought and salt stresses. Furthermore, the effect of GSH on root patterning and drought tolerance was confirmed by growing the atgstu17 in solution containing l-buthionine-(S,R)-sulfoximine, a specific inhibitor of GSH biosynthesis. In conclusion, the atgstu17 phenotype can be explained by the combined effect of GSH and ABA. We propose a role of AtGSTU17 in adaptive responses to drought and salt stresses by functioning as a negative component of stress-mediated signal transduction pathways.  相似文献   

20.
The degradation pathway of glutathione (GSH) in plants is not well understood. In mammals, GSH is predominantly metabolized through the γ-glutamyl cycle, where GSH is degraded by the sequential reaction of γ-glutamyl transpeptidase (GGT), γ-glutamyl cyclotransferase, and 5-oxoprolinase to yield glutamate (Glu) and dipeptides that are subject to peptidase action. In this study, we examined if GSH is degraded through the same pathway in Arabidopsis (Arabidopsis thaliana) as occurs in mammals. In Arabidopsis, the oxoprolinase knockout mutants (oxp1-1 and oxp1-2) accumulate more 5-oxoproline (5OP) and less Glu than wild-type plants, suggesting substantial metabolite flux though 5OP and that 5OP is a major contributor to Glu steady-state levels. In the ggt1-1/ggt4-1/oxp1-1 triple mutant with no GGT activity in any organs except young siliques, the 5OP concentration in leaves was not different from that in oxp1-1, suggesting that GGTs are not major contributors to 5OP production in Arabidopsis. 5OP formation strongly tracked the level of GSH in Arabidopsis plants, suggesting that GSH is the precursor of 5OP in a GGT-independent reaction. Kinetics analysis suggests that γ-glutamyl cyclotransferase is the major source of GSH degradation and 5OP formation in Arabidopsis. This discovery led us to propose a new pathway for GSH turnover in plants where GSH is converted to 5OP and then to Glu by the combined action of γ-glutamyl cyclotransferase and 5-oxoprolinase in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号