首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The RabGAP protein TBC1D5 controls cellular endomembrane trafficking processes and binds the retromer subunit VPS29 and the ubiquitin‐like protein ATG8 (LC3). Here, we describe that TBC1D5 also associates with ATG9 and the active ULK1 complex during autophagy. Moreover, ATG9 and TBC1D5 interact with clathrin and the AP2 complex. Depletion of TBC1D5 leads to missorting of ATG9 to late endosomes upon activation of autophagy, whereas inhibition of clathrin‐mediated endocytosis or AP2 depletion alters ATG9 trafficking and its association with TBC1D5. Taken together, our data show that TBC1D5 and the AP2 complex are important novel regulators of the rerouting of ATG9‐containing vesicular carriers toward sites of autophagosome formation.  相似文献   

2.
Membrane trafficking in male germ cells contributes to their development via cell morphological changes and acrosome formation. TBC family proteins work as Rab GTPase accelerating proteins (GAPs), which negatively regulate Rab proteins, to mediate membrane trafficking. In this study, we analyzed the expression of a Rab GAP, TBC1D9, in mouse organs and the intracellular localization of the gene products. Tbc1d9 showed abundant expression in adult mice testis. We found that the Tbc1d9 mRNA was expressed in primary and secondary spermatocytes, and that the TBC1D9 protein was expressed in spermatocytes and round spermatids. In 293T cells, TBC1D9-GFP proteins were localized in the endosome and Golgi apparatus. Compartments that were positive for the constitutive active mutants of Rab7 and Rab9 were also positive for TBC1D9 isoform 1. In addition, TBC1D9 proteins were associated with Rab7 and Rab9, respectively. These results indicate that TBC1D9 is expressed mainly in spermatocytes, and suggest that TBC1D9 regulates membrane trafficking pathways related to Rab9- or Rab7-positive vesicles.  相似文献   

3.
The mechanisms of tumor cell dissemination and the contribution of membrane trafficking in this process are poorly understood. Through a functional siRNA screening of human RAB GTPases, we found that RAB2A, a protein essential for ER‐to‐Golgi transport, is critical in promoting proteolytic activity and 3D invasiveness of breast cancer (BC) cell lines. Remarkably, RAB2A is amplified and elevated in human BC and is a powerful and independent predictor of disease recurrence in BC patients. Mechanistically, RAB2A acts at two independent trafficking steps. Firstly, by interacting with VPS39, a key component of the late endosomal HOPS complex, it controls post‐endocytic trafficking of membrane‐bound MT1‐MMP, an essential metalloprotease for matrix remodeling and invasion. Secondly, it further regulates Golgi transport of E‐cadherin, ultimately controlling junctional stability, cell compaction, and tumor invasiveness. Thus, RAB2A is a novel trafficking determinant essential for regulation of a mesenchymal invasive program of BC dissemination.  相似文献   

4.
Christopher A. Lamb 《Autophagy》2016,12(7):1212-1213
Amino acid withdrawal induces the formation of autophagosomes, which results in dozens of these large double-membrane vesicles appearing in the starved cell within 10–15 min, and the initiation of autophagy. This vesicle-mediated response clearly requires an adequate supply of membrane and a tight molecular regulation creating a substantial challenge for the cell in terms of vesicle trafficking pathways. Several membrane sources, which contribute to autophagosome initiation and formation, have been identified including the ER, Golgi, plasma membrane, mitochondria and recycling endosomes. How contributions from these organelles are regulated is an intensive area of study. Members of several families of membrane traffic regulators, including small GTPases, such as RAB proteins, and their regulators, SNARE proteins and BAR domain-containing proteins, have recently been shown to support autophagosome formation.  相似文献   

5.
Metastasis is the leading cause for mortality in melanoma patients. Here, an unbiased mass spectrometry‐based quantitative proteomic method is utilized to assess differential protein expression in a matched pair of primary/metastatic melanoma cell lines (i.e., WM‐115/WM‐266‐4) derived from the same patient. It is found that TBC1D7 is overexpressed in metastatic over primary melanoma cells, and elevated expression of TBC1D7 promotes the invasion of these melanoma cells in vitro, partly through modulating the activities of secreted matrix metalloproteinases 2 and 9. Additionally, interrogation of publicly available data show that higher mRNA expression of TBC1D7 predicts poorer survival in melanoma patients. Together, the results suggest TBC1D7 as a driver for melanoma cell invasion, which is an important element in melanoma metastasis. The proteomic data generated from this study may also be useful for exploring the roles of other proteins in melanoma metastasis.  相似文献   

6.
Listeria monocytogenes is a food‐borne pathogenic bacterium that invades intestinal epithelial cells through a phagocytic pathway that relies on the activation of host cell RAB5 GTPases. Listeria monocytogenes must subsequently inhibit RAB5, however, in order to escape lysosome‐mediated destruction. Relatively little is known about upstream RAB5 regulators during L. monocytogenes entry and phagosome escape processes in epithelial cells. Here we identify RIN1, a RAS effector and RAB5‐directed guanine nucleotide exchange factor (GEF), as a host cell factor in L. monocytogenes infection. RIN1 is rapidly engaged following L. monocytogenes infection and is required for efficient invasion of intestinal epithelial cells. RIN1‐mediated RAB5 activation later facilitates the fusion of phagosomes with lysosomes, promoting clearance of bacteria from the host cell. These results suggest that RIN1 is a host cell regulator that performs counterbalancing functions during early and late stages of L. monocytogenes infection, ultimately favoring pathogen clearance.   相似文献   

7.
RAB5 GTPases are important regulators of endosomal membrane traffic. Among them Arabidopsis thaliana ARA7/RABF2b is highly conserved and homologues are present in fungal, animal and plant kingdoms. In land plants ARA7 and its homologues are involved in endocytosis and transport towards the vacuole. Here we report on the isolation of an ARA7 homologue (CaARA7/CaRABF2) in the highly evolved characean green alga Chara australis. It encodes a polypeptide of 202 amino acids with a calculated molecular mass of 22.2 kDa and intrinsic GTPase activity. Immunolabelling of internodal cells with a specific antibody reveals CaARA7 epitopes at multivesicular endosomes (MVEs) and at MVE‐containing wortmannin (WM) compartments. When transiently expressed in epidermal cells of Nicotiana benthamiana leaves, fluorescently tagged CaARA7 localizes to small organelles (putative MVEs) and WM compartments, and partially colocalizes with AtARA7 and CaARA6, a plant specific RABF1 GTPase. Mutations in membrane anchoring and GTP binding sites alter localization of CaARA7 and affect GTPase activity, respectively. This first detailed study of a conventional RAB5 GTPase in green algae demonstrates that CaARA7 is similar to RAB5 GTPases from land plants and other organisms and shows conserved structure and localization.  相似文献   

8.
9.
10.
TBC7, a TBC (Tre-2/Bub2/Cdc16) 1 domain protein, was identified as a novel binding protein to the TSC1-TSC2 tumor suppressor complex by peptide mass fingerprinting analysis of the proteins immunoprecipitated with FLAG-epitope tagged TSC1 and TSC2 from the transfected mammalian cells. The in vivo and in vitro association of TBC7 and the TSC1-TSC2 complex was confirmed by the co-immunoprecipitation and pull-down analysis, respectively, and TBC7 was revealed to bind to the C-terminal half region of TSC1, which is distinct from the binding site with TSC2. The immunofluorescence microscopy and subcellular fractionation showed that TBC7 co-localizes with the tumor suppressor complex in the endomembrane. Overexpression of TBC7 enhanced ubiquitination of TSC1 and increased phosphorylation of S6 protein by S6 kinase, that is located in the mTOR-signaling pathway. These results indicate TBC7 could take a part in the negative regulation of the tumor suppressor complex through facilitating the downregulation of TSC1.  相似文献   

11.
12.
TBC1D15 belongs to the TBC (Tre‐2/Bub2/Cdc16) domain family and functions as a GTPase‐activating protein (GAP) for Rab GTPases. So far, the structure of TBC1D15 or the TBC1D15·Rab complex has not been determined, thus, its catalytic mechanism on Rab GTPases is still unclear. In this study, we solved the crystal structures of the Shark and Sus TBC1D15 GAP domains, to 2.8 Å and 2.5 Å resolution, respectively. Shark‐TBC1D15 and Sus‐TBC1D15 belong to the same subfamily of TBC domain‐containing proteins, and their GAP‐domain structures are highly similar. This demonstrates the evolutionary conservation of the TBC1D15 protein family. Meanwhile, the newly determined crystal structures display new variations compared to the structures of yeast Gyp1p Rab GAP domain and TBC1D1. GAP assays show that Shark and Sus GAPs both have higher catalytic activity on Rab11a·GTP than Rab7a·GTP, which differs from the previous study. We also demonstrated the importance of arginine and glutamine on the catalytic sites of Shark GAP and Sus GAP. When arginine and glutamine are changed to alanine or lysine, the activities of Shark GAP and Sus GAP are lost.  相似文献   

13.
In humans, loss of TBC1D20 (TBC1 domain family, member 20) protein function causes Warburg Micro syndrome 4 (WARBM4), an autosomal recessive disorder characterized by congenital eye, brain, and genital abnormalities. TBC1D20-deficient mice exhibit ocular abnormalities and male infertility. TBC1D20 is a ubiquitously expressed member of the family of GTPase-activating proteins (GAPs) that increase the intrinsically slow GTP-hydrolysis rate of small RAB-GTPases when bound to GTP. Biochemical studies have established TBC1D20 as a GAP for RAB1B and RAB2A. However, the cellular role of TBC1D20 still remains elusive, and there is little information about how the functional loss of TBC1D20 causes clinical manifestations in WARBM4-affected children. Here we evaluate the role of TBC1D20 in cells carrying a null mutant allele, as well as TBC1D20-deficient mice, which display eye and testicular abnormalities. We demonstrate that TBC1D20, via its RAB1B GAP function, is a key regulator of autophagosome maturation, a process required for maintenance of autophagic flux and degradation of autophagic cargo. Our results provide evidence that TBC1D20-mediated autophagosome maturation maintains lens transparency by mediating the removal of damaged proteins and organelles from lens fiber cells. Additionally, our results show that in the testes TBC1D20-mediated maturation of autophagosomes is required for autophagic flux, but is also required for the formation of acrosomes. Furthermore TBC1D20-deficient mice, while not mimicking severe developmental brain abnormalities identified in WARBM4 affected children, display disrupted neuronal autophagic flux resulting in adult-onset motor dysfunction. In summary, we show that TBC1D20 has an essential role in the maturation of autophagosomes and a defect in TBC1D20 function results in eye, testicular, and neuronal abnormalities in mice implicating disrupted autophagy as a mechanism that contributes to WARBM4 pathogenesis.  相似文献   

14.
The Rab-GTPase activating protein TBC1D1 is a paralog of AS160/TBC1D4. AS160/TBC1D4, a downstream effector of Akt, has been shown to play a central role in beta-cell function and survival. The two proteins have overlapping function in insulin signalling in muscle cells. However, the expression and the potential role of TBC1D1 in beta-cells remain unknown. Therefore, the aim of this study is to investigate whether TBC1D1 is expressed in beta-cells and whether it plays, as AS160/TBC1D4, a role in beta-cell function and survival. Using human and rat beta-cells, this study shows for the first time that TBC1D1 is expressed and phosphorylated in response to glucose in these cells. Knockdown of TBC1D1 in beta-cells resulted in increased basal and glucose-stimulated insulin release, decreased proliferation but no change in apoptosis.  相似文献   

15.
16.
This study aims to explore the mechanism of Circular RNA CDR1as implicating in regulating 5‐fluorouracil (5‐FU) chemosensitivity in breast cancer (BC) by competitively inhibiting miR‐7 to regulate CCNE1. Expressions of CDR1as and miR‐7 in 5‐FU‐resistant BC cells were determined by RT‐PCR. CCK‐8, colony formation assay and flow cytometry were applied to measure half maximal inhibitory concentration (IC50), 5‐Fu chemosensitivity and cell apoptosis. Western blot was used to detect the expressions of apoptosis‐related factors. CDR1as was elevated while miR‐7 was inhibited in 5‐FU‐resistant BC cells. Cells transfected with si‐CDR1as or miR‐7 mimic had decreased IC50 and colony formation rate, increased expressions of Bax/Bcl2 and cleaved‐Caspase‐3/Caspase‐3, indicating inhibition of CDR1as and overexpression of miR‐7 enhances the chemosensitity of 5‐FU‐resistant BC cells. Targetscan software indicates a binding site of CDR1as and miR‐7 and that CCNE1 is a target gene of miR‐7. miR‐7 can gather CDR1as in BC cells and can inhibit CCNE1. In comparison to si‐CDR1as group, CCNE1 was increased and chemosensitivity to 5‐Fu was suppressed in si‐CDR1as + miR‐7 inhibitor group. When compared with miR‐7 mimic group, CDR1as + miR‐7 mimic group had increased CCNE1 and decreased chemosensitivity to 5‐Fu. Nude mouse model of BC demonstrated that the growth of xenotransplanted tumour in si‐CDR1as + miR‐7 inhibitor group was faster than that in si‐CDR1as group. The tumour growth in CDR1as + miR‐7 mimic group was faster than that in miR‐7 mimic group. CDR1as may regulate chemosensitivity of 5‐FU‐resistant BC cells by inhibiting miR‐7 to regulate CCNE1.  相似文献   

17.
18.
19.
Let‐7 miRNAs act as tumour suppressors by directly binding to the 3′UTRs of downstream gene products. The regulatory role of let‐7 in downstream gene expression has gained much interest in the cancer research community, as it controls multiple biological functions and determines cell fates. For example, one target of the let‐7 family is cyclin D1, which promotes G0/S cell cycle progression and oncogenesis, was correlated with endoribonuclease DICER1, another target of let‐7. Down‐regulated let‐7 has been identified in many types of tumours, suggesting a feedback loop may exist between let‐7 and cyclin D1. A potential player in the proposed feedback relationship is Dicer, a central regulator of miRNA expression through sequence‐specific silencing. We first identified that DICER1 is the key downstream gene for cyclin D1‐induced let‐7 expression. In addition, we found that let‐7 miRNAs expression decreased because of the p53‐induced cell death response, with deregulated cyclin D1. Our results also showed that cyclin D1 is required for Nutlin‐3 and TAX‐induced let‐7 expression in cancer repression and the cell death response. For the first time, we provide evidence that let‐7 and cyclin D1 form a feedback loop in regulating therapy response of cancer cells and cancer stem cells, and importantly, that alteration of let‐7 expression, mainly caused by cyclin D1, is a sensitive indicator for better chemotherapies response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号