首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The 3′ untranslated region of mRNA encoding PHAX, a phosphoprotein required for nuclear export of U-type snRNAs, contains cis-acting sequence motifs E2 and VM1 that are required for localization of RNAs to the vegetal hemisphere of Xenopus oocytes. However, we have found that PHAX mRNA is transported to the opposite, animal, hemisphere. A set of proteins that cross-link to the localization elements of vegetally localized RNAs are also cross-linked to PHAX and An1 mRNAs, demonstrating that the composition of RNP complexes that form on these localization elements is highly conserved irrespective of the final destination of the RNA. The ability of RNAs to bind this core group of proteins is correlated with localization activity. Staufen1, which binds to Vg1 and VegT mRNAs, is not associated with RNAs localized to the animal hemisphere and may determine, at least in part, the direction of RNA movement in Xenopus oocytes.  相似文献   

4.
5.
The Tetrahymena thermophila origin recognition complex (ORC) contains an integral RNA subunit, 26T RNA, which confers specificity to the amplified ribosomal DNA (rDNA) origin by base pairing with an essential cis‐acting replication determinant—the type I element. Using a plasmid maintenance assay, we identified a 6.7 kb non‐rDNA fragment containing two closely associated replicators, ARS1‐A (0.8 kb) and ARS1‐B (1.2 kb). Both replicators lack type I elements and hence complementarity to 26T RNA, suggesting that ORC is recruited to these sites by an RNA‐independent mechanism. Consistent with this prediction, although ORC associated exclusively with origin sequences in the 21 kb rDNA minichromosome, the interaction between ORC and the non‐rDNA ARS1 chromosome changed across the cell cycle. In G2 phase, ORC bound to all tested sequences in a 60 kb interval spanning ARS1‐A/B. Remarkably, ORC and Mcm6 associated with just the ARS1‐A replicator in G1 phase when pre‐replicative complexes assemble. We propose that ORC is stochastically deposited onto newly replicated non‐rDNA chromosomes and subsequently targeted to preferred initiation sites prior to the next S phase.  相似文献   

6.
Group II introns are large catalytic RNAs that are found in bacteria and organellar genomes of lower eukaryotes, but are particularly prevalent within mitochondria in plants, where they are present in many critical genes. The excision of plant mitochondrial introns is essential for respiratory functions, and is facilitated in vivo by various protein cofactors. Typical group II introns are classified as mobile genetic elements, consisting of the self‐splicing ribozyme and its own intron‐encoded maturase protein. A hallmark of maturases is that they are intron‐specific, acting as cofactors that bind their intron‐containing pre‐RNAs to facilitate splicing. However, the degeneracy of the mitochondrial introns in plants and the absence of cognate intron‐encoded maturase open reading frames suggest that their splicing in vivo is assisted by ‘trans’‐acting protein factors. Interestingly, angiosperms harbor several nuclear‐encoded maturase‐related (nMat) genes that contain N‐terminal mitochondrial localization signals. Recently, we established the roles of two of these paralogs in Arabidopsis, nMAT1 and nMAT2, in the splicing of mitochondrial introns. Here we show that nMAT4 (At1g74350) is required for RNA processing and maturation of nad1 introns 1, 3 and 4 in Arabidopsis mitochondria. Seed germination, seedling establishment and development are strongly affected in homozygous nmat4 mutants, which also show modified respiration phenotypes that are tightly associated with complex I defects.  相似文献   

7.
8.
9.
In mice, dosage compensation of X‐linked gene expression is achieved through the inactivation of one of the two X‐chromosomes in XX female cells. The complex epigenetic process leading to X‐inactivation is largely controlled by Xist and Tsix, two non‐coding genes of opposing function. Xist RNA triggers X‐inactivation by coating the inactive X, while Tsix is critical for the designation of the active X‐chromosome through cis‐repression of Xist RNA accumulation. Recently, a plethora of trans‐acting factors and cis‐regulating elements have been suggested to act as key regulators of either Xist, Tsix or both; these include ubiquitous factors such as Yy1 and Ctcf, developmental proteins such as Nanog, Oct4 and Sox2, and X‐linked regulators such as Rnf12. In this paper we summarise recent advances in our knowledge of the regulation of Xist and Tsix in embryonic stem (ES) and differentiating ES cells.  相似文献   

10.
The problem of the start of biological evolution in the ancient RNA world is considered. It is postulated that the appearance of catalytic RNAs — ribozymes — via spontaneous cis- and trans-rearrangements of polyribonucleotides in primordial Darwin ponds should not have been sufficient for the start of evolution, until a new class of functional RNA, namely energy-dependent molecular machines, arose. The proposed hypothesis is that the simplest and primary type of molecular machines could be nucleoside triphosphate-dependent RNA-based helicases, which were capable of unwinding the stable double-helical RNAs inevitably formed during RNA syntheses on complementary templates. Thereupon, unwinding RNA polymerases could appear as a result of association or fusion of helicases and polyribonucleotide-polymerizing ribozymes. The latter event provided the mechanism of RNA replication using the double-helical RNAs as a communal genofond (gene pool) of a Darwin pond, and thus initiated the fast evolution of the ancient RNA world.  相似文献   

11.
12.
13.
The past decade has seen a tremendous increase in RNA research, which has demonstrated that RNAs are involved in many more processes than were previously thought. The dynamics of RNA synthesis towards their regulated activity requires the interplay of RNAs with numerous RNA binding proteins (RBPs). The localization of RNA, a mechanism for controlling translation in a spatial and temporal fashion, requires processing and assembly of RNA into transport granules in the nucleus, transport towards cytoplasmic destinations and regulation of its activity. Compared with animal model systems little is known about RNA dynamics and motility in plants. Commonly used methods to study RNA transport and localization are time‐consuming, and require expensive equipment and a high level of experimental skill. Here, we introduce the λN22 RNA stem‐loop binding system for the in vivo visualization of RNA in plant cells. The λN22 system consists of two components: the λN22 RNA binding peptide and the corresponding box‐B stem loops. We generated fusions of λN22 to different fluorophores and a GATEWAY vector series for the simple fusion of any target RNA 5′ or 3′ to box‐B stem loops. We show that the λN22 system can be used to detect RNAs in transient expression assays, and that it offers advantages compared with the previously described MS2 system. Furthermore, the λN22 system can be used in combination with the MS2 system to visualize different RNAs simultaneously in the same cell. The toolbox of vectors generated for both systems is easy to use and promises significant progress in our understanding of RNA transport and localization in plant cells.  相似文献   

14.
15.
16.
《Seminars in Virology》1997,8(3):194-204
The RNA genomes of simple retroviruses encode three genes (gag, pol,andenv) which are required for replication. In addition, there are at least three well-definedcis-acting structures which regulate important aspects of the viral life cycle. The packaging signal at the 5′ end of the RNA tags the genomic RNA for specific encapsidation into assembling virus. Since viral Env proteins are translated from spliced mRNAs,cis-acting splicing signals ensure that the proper ratio of spliced and unspliced viral RNAs is present in the infected cell. Finally,cis-acting elements at the 3′ end of the genome promote the export of unspliced RNAs from the nucleus for translation and encapsidation.  相似文献   

17.
18.
19.
INCREASED SIZE EXCLUSION LIMIT 2 (ISE2) encodes a putative DEVH‐box RNA helicase originally identified through a genetic screening for Arabidopsis mutants altered in plasmodesmata (PD) aperture. Depletion of ISE2 also affects chloroplasts activity, decreases accumulation of photosynthetic pigments and alters expression of photosynthetic genes. In this work, we show the chloroplast localization of ISE2 and decipher its role in plastidic RNA processing and, consequently, PD function. Group II intron‐containing RNAs from chloroplasts exhibit defective splicing in ise2 mutants and ISE2‐silenced plants, compromising plastid viability. Furthermore, RNA immunoprecipitation suggests that ISE2 binds in vivo to several splicing‐regulated RNAs. Finally, we show that the chloroplast clpr2 mutant (defective in a subunit of a plastidic Clp protease) also exhibits abnormal PD function during embryogenesis, supporting the idea that chloroplast RNA processing is required to regulate cell–cell communication in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号