首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rab11 is a GTPase that regulates endosomal trafficking to apical plasma membrane domains in polarized epithelial cells. We report the identification of a novel Rab11 effector, Rip11. Rip11 is enriched in polarized epithelial cells where, like Rab11, it is localized to subapical recycling endosomes (ARE) and the apical plasma membrane. Using various transport assays, we demonstrate that Rip11 is important for protein trafficking from ARE to the apical plasma membrane. Rip11 is recruited to ARE by binding to Rab11 as well as through a Mg(2+)-dependent interaction of its C2 domain with neutral phospholipids. The association of Rip11 with membranes is regulated by a phosphorylation and dephosphorylation cycle. We propose a model whereby the Rab11/Rip 11 complex regulates vesicle targeting from the ARE.  相似文献   

2.
The regulated trafficking of AMPA-type glutamate receptors (AMPARs) from dendritic compartments to the synaptic membrane in response to neuronal activity is a core mechanism for long-term potentiation (LTP). However, the contribution of the microtubule cytoskeleton to this synaptic transport is still unknown. In this work, using electrophysiological, biochemical, and imaging techniques, we have found that one member of the kinesin-3 family of motor proteins, KIF13A, is specifically required for the delivery of AMPARs to the spine surface during LTP induction. Accordingly, KIF13A depletion from hippocampal slices abolishes LTP expression. We also identify the vesicular protein centaurin-α1 as part of a motor transport machinery that is engaged with KIF13A and AMPARs upon LTP induction. Finally, we determine that KIF13A is responsible for the remodeling of Rab11-FIP2 endosomal structures in the dendritic shaft during LTP. Overall, these results identify specific kinesin molecular motors and endosomal transport machinery that catalyzes the dendrite-to-synapse translocation of AMPA receptors during synaptic plasticity.  相似文献   

3.
The bidirectional communication between integrin αvβ3 and vascular endothelial growth factor (VEGF) receptors acts to integrate and coordinate endothelial cell (EC) activity during angiogenesis. However, the molecular mechanisms involved in this signaling crosstalk are only partially revealed. We have found that protein kinase D1 (PKD1) was activated by VEGF‐A, but not by other angiogenic factors, and associated with αvβ3 integrin. Moreover, knockdown of PKD1 increased endocytosis of αvβ3 and reduced its return from endosomes to the plasma membrane leading to accumulation of the integrin in Rab5‐ and Rab4‐positive endosomes. Consistent with this, PKD1 knockdown caused defects in focal complex formation and reduced EC migration in response to VEGF‐A. Moreover, knockdown of PKD1 reduced EC motility on vitronectin, whereas migration on collagen I was not PKD1 dependent. These results suggest that PKD1‐regulated αvβ3 trafficking contributes to the angiogenesis process by integrating VEGF‐A signaling with extracellular matrix interactions.  相似文献   

4.
RGS4, a heterotrimeric G-protein inhibitor, localizes to plasma membrane (PM) and endosomal compartments. Here, we examined Rab-mediated control of RGS4 internalization and recycling. Wild type and constitutively active Rab5 decreased RGS4 PM levels while increasing its endosomal targeting. Rab5, however, did not appreciably affect the PM localization or function of the M1 muscarinic receptor (M1R)/Gq signaling cascade. RGS4-containing endosomes co-localized with subsets of Rab5-, transferrin receptor-, and Lamp1/Lysotracker-marked compartments suggesting RGS4 traffics through PM recycling or acidified endosome pathways. Rab7 activity promoted TGN association, whereas Rab7(dominant negative) trapped RGS4 in late endosomes. Furthermore, RGS4 was found to co-localize with an endosomal pool marked by Rab11, the protein that mediates recycling/sorting of proteins to the PM. The Cys-12 residue in RGS4 appeared important for its Rab11-mediated trafficking to the PM. Rab11(dominant negative) decreased RGS4 PM levels and increased the number of RGS4-containing endosomes. Inhibition of Rab11 activity decreased RGS4 function as an inhibitor of M1R activity without affecting localization and function of the M1R/Gq signaling complex. Thus, both Rab5 activation and Rab11 inhibition decreased RGS4 function in a manner that is independent from their effects on the localization and function of the M1R/Gq signaling complex. This is the first study to implicate Rab GTPases in the intracellular trafficking of an RGS protein. Thus, Rab GTPases may be novel molecular targets for the selective regulation of M1R-mediated signaling via their specific effects on RGS4 trafficking and function.  相似文献   

5.
Melanosomes are a type of lysosome‐related organelle that is commonly defective in Hermansky–Pudlak syndrome. Biogenesis of melanosomes is regulated by BLOC‐1, ‐2, ‐3, or AP‐1, ‐3 complexes, which mediate cargo transport from recycling endosomes to melanosomes. Although several Rab GTPases have been shown to regulate these trafficking steps, the precise role of Rab9A remains unknown. Here, we found that a cohort of Rab9A associates with the melanosomes and its knockdown in melanocytes results in hypopigmented melanosomes due to mistargeting of melanosomal proteins to lysosomes. In addition, the Rab9A‐depletion phenotype resembles Rab38/32‐inactivated or BLOC‐3‐deficient melanocytes, suggesting that Rab9A works in line with BLOC‐3 and Rab38/32 during melanosome cargo transport. Furthermore, silencing of Rab9A, Rab38/32 or its effector VARP, or BLOC‐3‐deficiency in melanocytes decreased the length of STX13‐positive recycling endosomal tubules and targeted the SNARE to lysosomes. This result indicates a defect in directing recycling endosomal tubules to melanosomes. Thus, Rab9A and its co‐regulatory GTPases control STX13‐mediated cargo delivery to maturing melanosomes.  相似文献   

6.
Intracellular trafficking of G protein-coupled receptors (GPCRs) regulates their surface availability and determines cellular response to agonists. Rab GTPases regulate membrane trafficking and identifying Rab networks controlling GPCR trafficking is essential for understanding GPCR signaling. We used real time imaging to show that somatostatin receptor 3 (SSTR3) traffics through Rab4-, Rab21-, and Rab11-containing endosomes, but largely bypasses Rab5 and Rab7 endosomes. We show that SSTR3 rapidly traffics through Rab4 endosomes but moves slower through Rab21 and Rab11 endosomes. SSTR3 passage through each endosomal compartment is regulated by the cognate Rab since expression of the inactive Rab4/S22N, Rab21/T33N, and Rab11/S25N inhibits SSTR3 trafficking. Thus, Rab4, Rab21, and Rab11 may represent therapeutic targets to modulate surface availability of SSTR3 for agonist binding. Our novel finding that Rab21 regulates SSTR3 trafficking suggests that Rab21 may play a role in trafficking of other GPCRs.  相似文献   

7.
Modulation of cellular cholesterol transport and homeostasis by Rab11   总被引:11,自引:5,他引:6       下载免费PDF全文
To analyze the contribution of vesicular trafficking pathways in cellular cholesterol transport we examined the effects of selected endosomal Rab proteins on cholesterol distribution by filipin staining. Transient overexpression of Rab11 resulted in prominent accumulation of free cholesterol in Rab11-positive organelles that sequestered transferrin receptors and internalized transferrin. Sphingolipids were selectively redistributed as pyrene-sphingomyelin and sulfatide cosequestered with Rab11-positive endosomes, whereas globotriaosyl ceramide and GM2 ganglioside did not. Rab11 overexpression did not perturb the transport of 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine-perchlorate–labeled low-density lipoprotein (LDL) to late endosomes or the Niemann-Pick type C1 (NPC1)-induced late endosomal cholesterol clearance in NPC patient cells. However, Rab11 overexpression inhibited cellular cholesterol esterification in an LDL-independent manner. This effect could be overcome by introducing cholesterol to the plasma membrane by using cyclodextrin as a carrier. These results suggest that in Rab11-overexpressing cells, deposition of cholesterol in recycling endosomes results in its impaired esterification, presumably due to defective recycling of cholesterol to the plasma membrane. The findings point to the importance of the recycling endosomes in regulating cholesterol and sphingolipid trafficking and cellular cholesterol homeostasis.  相似文献   

8.
Different classes of endosomes exhibit a characteristic intracellular steady-state distribution governed by interactions with the cytoskeleton. We found a kinesin-3, KIF16B, that transports early endosomes to the plus end of microtubules in a process regulated by the small GTPase Rab5 and its effector, the phosphatidylinositol-3-OH kinase hVPS34. In vivo, KIF16B overexpression relocated early endosomes to the cell periphery and inhibited transport to the degradative pathway. Conversely, expression of dominant-negative mutants or ablation of KIF16B by RNAi caused the clustering of early endosomes to the perinuclear region, delayed receptor recycling to the plasma membrane, and accelerated degradation. These results suggest that KIF16B, by regulating the plus end motility of early endosomes, modulates the intracellular localization of early endosomes and the balance between receptor recycling and degradation. We propose that this mechanism could have important implications for signaling.  相似文献   

9.
Rab35 is one of the first discovered members of the large Rab GTPase family, yet it received little attention for 10 years being considered merely as a Rab1‐like GTPase. In 2006, Rab35 was recognized as a unique Rab GTPase localized both at the plasma membrane and on endosomes, playing essential roles in endocytic recycling and cytokinesis. Since then, Rab35 has become one of the most studied Rabs involved in a growing number of cellular functions, including endosomal trafficking, exosome release, phagocytosis, cell migration, immunological synapse formation and neurite outgrowth. Recently, Rab35 has been acknowledged as an oncogenic GTPase with activating mutations being found in cancer patients. In this review, we provide a comprehensive summary of known Rab35‐dependent cellular functions and detail the few Rab35 effectors characterized so far. We also review how the Rab35 GTP/GDP cycle is regulated, and emphasize a newly discovered mechanism that controls its tight activation on newborn endosomes. We propose that the involvement of Rab35 in such diverse and apparently unrelated cellular functions can be explained by the central role of this GTPase in regulating phosphoinositides and F‐actin, both on endosomes and at the plasma membrane.   相似文献   

10.
11.
We have used a c-Src-GFP fusion protein to address the spatial control of Src activation and the nature of Src-associated intracellular structures during stimulus-induced transit to the membrane. Src is activated during transit, particularly in RhoB-containing cytoplasmic endosomes associated with the perinuclear recycling compartment. Knocking out RhoB or expressing a dominant-interfering Rab11 mutant suppresses both catalytic activation of Src and translocation of active kinase to peripheral membrane structures. In addition, the Src- and RhoB-containing endosomes harbor proteins involved in actin polymerization and filament assembly, for example Scar1, and newly polymerized actin can associate with these endosomes in a Src-dependent manner. This implies that Src may regulate an endosome-associated actin nucleation activity. In keeping with this, Src controls the actin dependence of RhoB endosome movement toward the plasma membrane. This work identifies RhoB as a component of "outside-in" signaling pathways that coordinate Src activation with translocation to transmembrane receptors.  相似文献   

12.
Rab22 and Rab31 belong to the Rab5 subfamily of GTPases that regulates endocytic traffic and endosomal sorting. Rab22 and Rab31 (a.k.a. Rab22b) are closely related and share 87% amino acid sequence similarity, but they show distinct intracellular localization and function in the cell. Rab22 is localized to early endosomes and regulates early endosomal recycling, while Rab31 is mostly localized to the Golgi complex with only a small fraction in the endosomes at steady state. The specific determinants that affect this differential localization, however, are unclear. In this study, we identify a novel membrane targeting domain (MTD) consisting of the C-terminal hypervariable domain (HVD), interswitch loop (ISL), and N-terminal domain as a major determinant of endosomal localization for Rab22 and Rab31, as well as Rab5. Rab22 and Rab31 share the same N-terminal domain, but we find Rab22 chimeras with Rab31 HVD exhibit phenotypic Rab31 localization to the Golgi complex, while Rab31 chimeras with the Rab22 HVD localize to early endosomes, similar to wildtype Rab22. We also find that the Rab22 HVD favors interaction with the early endosomal effector protein Rabenosyn-5, which may stabilize the Rab localization to the endosomes. The importance of effector interaction in endosomal localization is further demonstrated by the disruption of Rab22 endosomal localization in Rabenosyn-5 knockout cells and by the shift of Rab31 to the endosomes in Rabenosyn-5-overexpressing cells. Taken together, we have identified a novel MTD that mediates localization of Rab5 subfamily members to early endosomes via interaction with an effector such as Rabenosyn-5.  相似文献   

13.
G-protein coupled receptors activate heterotrimeric G proteins at the plasma membrane in which most of their effectors are intrinsically located or transiently associated as the external signal is being transduced. This paradigm has been extended to the intracellular compartments by studies in yeast showing that trafficking of Gα activates phosphatidylinositol 3-kinase (PI3K) at endosomal compartments, suggesting that vesicle trafficking regulates potential actions of Gα and possibly Gβγ at the level of endosomes. Here, we show that Gβγ interacts with Rab11a and that the two proteins colocalize at early and recycling endosomes in response to activation of lysophosphatidic acid (LPA) receptors. This agonist-dependent association of Gβγ to Rab11a-positive endosomes contributes to the recruitment of PI3K and phosphorylation of AKT at this intracellular compartment. These events are sensitive to the expression of a dominant-negative Rab11a mutant or treatment with wortmannin, suggesting that Rab11a-dependent Gβγ trafficking promotes the activation of the PI3K/AKT signaling pathway associated with endosomal compartments. In addition, RNA interference-mediated Rab11a depletion, or expression of a dominant-negative Rab11a mutant attenuated LPA-dependent cell survival and proliferation, suggesting that endosomal activation of the PI3K/AKT signaling pathway in response to Gβγ trafficking, via its interaction with Rab11, is a relevant step in the mechanism controlling these fundamental events.  相似文献   

14.
RhoD is a member of the classical Rho GTPases and it has essential roles in the regulation of actin dynamics. RhoD localizes to early endosomes and recycling endosomes, which indicates its important role in the regulation of endosome trafficking. Here, we show that RhoD binds to the Rab5 effector Rabankyrin‐5, and RhoD and Rabankyrin‐5 colocalize to Rab5‐positive endosomes, which suggests a role for Rabankyrin‐5 in the coordination of RhoD and Rab5 in endosomal trafficking. Interestingly, depletion of RhoD using siRNA techniques interfered with the internalization of the PDGFβ receptor and the subsequent activation of the downstream signaling cascades. Our data suggest that RhoD and Rabankyrin‐5 have important roles in coordinating RhoD and Rab activities during internalization and trafficking of activated tyrosine kinase receptors .  相似文献   

15.
The regulation of hedgehog signaling by vesicular trafficking was exemplified by the finding that Rab23, a Rab-GTPase vesicular transport protein, is mutated in open brain mice. In this study, the localization of Rab23 was analyzed by light and immunoelectron microscopy after expression of wild-type (Rab23-GFP), constitutively active Rab23 (Rab23Q68L-GFP), and inactive Rab23 (Rab23S23N-GFP) in a range of mammalian cell types. Rab23-GFP and Rab23Q68L-GFP were predominantly localized to the plasma membrane but were also associated with intracellular vesicular structures, whereas Rab23S23N-GFP was predominantly cytosolic. Vesicular Rab23-GFP colocalized with Rab5Q79L and internalized transferrin-biotin, but not with a marker of the late endosome or the Golgi complex. To investigate Rab23 with respect to members of the hedgehog signaling pathway, Rab23-GFP was coexpressed with either patched or smoothened. Patched colocalized with intracellular Rab23-GFP but smoothened did not. Analysis of patched distribution by light and immunoelectron microscopy revealed it is primarily localized to endosomal elements, including transferrin receptor-positive early endosomes and putative endosome carrier vesicles and, to a lesser extent, with LBPA-positive late endosomes, but was excluded from the plasma membrane. Neither patched or smoothened distribution was altered in the presence of wild-type nor mutant Rab23-GFP, suggesting that despite the endosomal colocalization of Rab23 and patched, it is likely that Rab23 acts more distally in regulating hedgehog signaling.  相似文献   

16.
Endosomal sorting is essential for cell homeostasis. Proteins targeted for degradation are retained in the maturing endosome vacuole while others are recycled to the cell surface or sorted to the biosynthetic pathway via tubular transport carriers. Sorting nexin (SNX) proteins containing a BAR (for Bin-Amphiphysin-Rvs) domain are key regulators of phosphoinositide-mediated, tubular-based endosomal sorting, but how such sorting is co-ordinated with endosomal maturation is not known. Here, using well-defined Rab GTPases as endosomal compartment markers, we have analyzed the localization of SNX1 [endosome-to-trans-Golgi network (TGN) transport as part of the SNX-BAR-retromer complex], SNX4 (cargo-recycling from endosomes to the plasma membrane) and SNX8 (endosomes-to-TGN trafficking in a retromer-independent manner). We show that these SNX-BARs are primarily localized to early endosomes, but display the highest frequency of tubule formation at the moment of early-to-late endosome transition: the Rab5-to-Rab7 switch. Perturbing this switch shifts SNX-BAR tubulation to early endosomes, resulting in SNX1-decorated tubules that lack retromer components VPS26 and VPS35, suggesting that both early and late endosomal characteristics of the endosome are important for SNX-BAR-retromer-tubule formation. We also establish that SNX4, but not SNX1 and SNX8, is associated with the Rab11-recycling endosomes and that a high frequency of SNX4-mediated tubule formation is observed as endosomes undergo Rab4-to-Rab11 transition. Our study therefore provides evidence for fine-tuning between the processes of endosomal maturation and the formation of endosomal tubules. As tubulation is required for SNX1-, SNX4- and SNX8-mediated sorting, these data reveal a previously unrecognized co-ordination between maturation and tubular-based sorting.  相似文献   

17.
Rab GTPases are recognized as critical regulatory factors involved in vesicular membrane transport and endosomal fusion. For example, Rab5 directs the transport and fusion of endocytic vesicles to and with early endosomes, whereas Rab4 is thought to control protein trafficking from early endosomes back to the plasma membrane. In the present study, we investigated the role of Rab5 and Rab4 GTPases in regulating the endocytosis, intracellular sorting, and the plasma membrane recycling of the beta(2)AR. In cells expressing the dominant-negative Rab5-S34N mutant, beta(2)AR internalization was impaired, and beta(2)AR-bearing endocytic vesicles remained in either close juxtaposition or physically attached to the plasma membrane. In contrast, a constitutively active Rab5-Q79L mutant redirected internalized beta(2)AR to enlarged endosomes but did not prevent beta(2)AR dephosphorylation and recycling. The expression of either wild-type Rab4 or a Rab4-N121I mutant did not prevent beta(2)AR dephosphorylation. However, the dominant-negative Rab4-N121I mutant blocked beta(2)AR resensitization by blocking receptor recycling from endosomes back to the cell surface. Our data indicate that, in addition to regulating the intracellular trafficking and fusion of beta(2)AR-bearing endocytic vesicles, Rab5 also contributes to the formation and/or budding of clathrin-coated vesicles. Furthermore, beta(2)AR dephosphorylation occurs as the receptor transits between Rab5- and Rab4-positive compartments.  相似文献   

18.
Vasopressin-induced trafficking of aquaporin-2 (AQP2) water channels in kidney collecting duct cells is critical to regulate the urine concentration. To better understand the mechanism of subcellular trafficking of AQP2, we examined MDCK cells expressing AQP2 as a model. We first performed double-immunolabeling of AQP2 with endosomal marker proteins, and showed that AQP2 is stored at a Rab11-positive subapical compartment. After the translocation to the plasma membrane, AQP2 was endocytosed to EEA1-positive early endosomes, and then transferred back to the original Rab11-positive compartment. When Rab11 was depleted by RNA interference, retention of AQP2 at the subapical storage compartment was impaired. We next examined the role of cytoskeleton in the AQP2 trafficking and localization. By the treatment with microtubule-disrupting agent such as nocodazole or colcemid, the distribution of AQP2 storage compartment was altered. The disruption of actin filaments with cytochalasin D or latrunculin B induced the accumulation of AQP2 in EEA1-positive early endosomes. Altogether, our data suggest that Rab11 and microtubules maintain the proper distribution of the subapical AQP2 storage compartment, and actin filaments regulate the trafficking of AQP2 from early endosomes to the storage compartment.  相似文献   

19.
Ferlins are a family of transmembrane‐anchored vesicle fusion proteins uniquely characterized by 5–7 tandem cytoplasmic C2 domains, Ca2+‐regulated phospholipid‐binding domains that regulate vesicle fusion in the synaptotagmin family. In humans, dysferlin mutations cause limb‐girdle muscular dystrophy type 2B (LGMD2B) due to defective Ca2+‐dependent, vesicle‐mediated membrane repair and otoferlin mutations cause non‐syndromic deafness due to defective Ca2+‐triggered auditory neurotransmission. In this study, we describe the tissue‐specific expression, subcellular localization and endocytic trafficking of the ferlin family. Studies of endosomal transit together with 3D‐structured illumination microscopy reveals dysferlin and myoferlin are abundantly expressed at the PM and cycle to Rab7‐positive late endosomes, supporting potential roles in the late‐endosomal pathway. In contrast, Fer1L6 shows concentrated localization to a specific compartment of the trans‐Golgi/recycling endosome, cycling rapidly between this compartment and the PM via Rab11 recycling endosomes. Otoferlin also shows trans‐Golgi to PM cycling, with very low levels of PM otoferlin suggesting either brief PM residence, or rare incorporation of otoferlin molecules into the PM. Thus, type‐I and type‐II ferlins segregate as PM/late‐endosomal or trans‐Golgi/recycling ferlins, consistent with different ferlins mediating vesicle fusion events in specific subcellular locations.   相似文献   

20.
A variety of intracellular membrane trafficking pathways are involved in establishing the polarization of resorbing osteoclasts and regulating bone resorption activities. Small GTP-binding proteins of rab family have been implicated as key regulators of membrane trafficking in mammalian cells. Here we used a RT-PCR-based cloning method and confocal laser scanning microscopy to explore the expression array and subcellular localization of rab proteins in osteoclasts. Rab1B, rab4B, rab5C, rab7, rab9, rab11B, and rab35 were identified from rat osteoclasts in this study. Rab5C may be associated with early endosomes, while rab11B is localized at perinuclear recycling compartments and may function in the ruffled border membrane turnover and osteoclast motility. Interestingly, late endosomal rabs, rab7, and rab9, were found to localize at the ruffled border membrane indicating a late endosomal nature of this specialized plasma membrane domain in resorbing osteoclasts. This also suggests that late endocytotic pathways may play an important role in the secretion of lysosomal enzymes, such as cathepsin K, during bone resorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号