首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oscillating glacial cycles over the past 2.4 million years are proposed to have had a major impact on the diversity of contemporary species communities. We used mitochondrial and nuclear DNA sequence data to infer phylogenetic relationships within Western Palearctic brown frogs and to test the influence of Pliocene and Pleistocene climatic changes on their evolution. We sequenced 1976bp of the mitochondrial genes 16S rRNA and cytochrome b and of the nuclear rhodopsin gene for all current species and subspecies. Based on an established allozyme clock for Western Palearctic water frogs and substitution rate constancy among water frogs and brown frogs, we calibrated a molecular clock for 1425bp of the 16S and rhodopsin genes. We applied this clock to date speciation events among brown frogs. Western Palearctic brown frogs underwent a basal post-Messinian radiation about 4 million years ago (mya) into five major clades: three monotypic lineages (Rana dalmatina, Rana latastei, Rana graeca), an Anatolian lineage, and a lineage comprising Rana italica, Rana arvalis, and all Iberian taxa. Polytypic lineages radiated further in concordance with the onset of climatic oscillations ca. 3.2, 2.0, and 1.0-0.6 mya, respectively. The dated fossil record corroborates our paleobiogeographic scenario. We conclude that drastic climatic changes followed by successive temperature oscillations "trapped" most brown frog species in their southern European glacial refugia with enough time to speciate. Substantial dispersal was only possible during extensive interglacial periods of a constant subtropical climate.  相似文献   

2.
Hotspots of intraspecific genetic diversity, which are of primary importance for the conservation of species, have been associated with glacial refugia, that is areas where species survived the Quaternary climatic oscillations. However, the proximate mechanisms generating these hotspots remain an open issue. Hotspots may reflect the long‐term persistence of large refugial populations; alternatively, they may result from allopatric differentiation between small and isolated populations, that later admixed. Here, we test these two scenarios in a widely distributed species of tree frog, Hyla orientalis, which inhabits Asia Minor and southeastern Europe. We apply a fine‐scale phylogeographic survey, combining fast‐evolving mitochondrial and nuclear markers, with a dense sampling throughout the range, as well as ecological niche modelling, to understand what shaped the genetic variation of this species. We documented an important diversity centre around the Black Sea, composed of multiple allopatric and/or parapatric diversifications, likely driven by a combination of Pleistocene climatic fluctuations and complex regional topography. Remarkably, this diversification forms a ring around the Black Sea, from the Caucasus through Anatolia and eastern Europe, with terminal forms coming into contact and partially admixing in Crimea. Our results support the view that glacial refugia generate rather than host genetic diversity and can also function as evolutionary melting pots of biodiversity. Moreover, we report a new case of ring diversification, triggered by a large, yet cohesive dispersal barrier, a very rare situation in nature. Finally, we emphasize the Black Sea region as an important centre of intraspecific diversity in the Palearctic with implications for conservation.  相似文献   

3.
Holarctic biodiversity has been influenced by climatic fluctuations since the Pliocene. Asia Minor was one of the major corridors for postglacial invasions in the Palearctic. Today this area is characterized by an extraordinarily rich fauna with close affiliation to European, Asian and Indo-African biota. However, exact scenarios of range expansion and contraction are lacking. Using a phylogeographical approach we (i). identify monophyletic lineages among Anatolian mountain frogs and (ii). derive a spatio-temporal hypothesis for the invasion process in Anatolia. We sequenced 540 bp of the mitochondrial 16S rRNA gene from 40 populations of mountain frogs from Anatolia, the Elburz Mountains and the Caucasus. Our samples comprise all known species and subspecies: Rana macrocnemis macrocnemis, R. m. tavasensis, R. m. pseudodalmatina, R. camerani and R. holtzi. They include the type localities of four of these taxa. We used a nested clade analysis (NCA) to infer historical and recurrent events that account for the observed geographical distribution of haplotypes. None of the extant species is monophyletic. Based on a molecular clock calibration using homologous sequences of Western Palearctic water frogs of the same genus, we estimated that a basic radiation into three lineages c. 2 Mya was followed by several dispersal and fragmentation events. The geographical distribution of resident and widespread haplotypes allows us to infer and date scenarios of range expansion and fragmentation that are aligned with dramatic climatic oscillations that have occurred during the last 600000 years. Consequently, Pliocene and Pleistocene climatic oscillations triggered the evolution of Anatolian mountain frogs through an interplay of vicariance and dispersal events.  相似文献   

4.
Hewitt GM 《Genetica》2011,139(5):617-638
The older history of hybrid zones is explored through consideration of recent advances in climatology, paleontology and phylogeography in the Late Cenozoic, particularly the Quaternary Period with its major climatic cycles. The fossil record shows that these ice ages and their nested millennial oscillations caused substantial changes in species distributions and with genetic evidence allows deduction of refugia and colonization routes in arctic, temperate, desert and tropical regions. The age of divergence between hybridizing lineages varies from the Late Pleistocene to the Late Miocene, implying much range change and varying selection on sister lineages. Hybridizing lineages in the Tropical and Temperate regions range in age from young to old, but those studied in the Arctic are no more than a few ice ages old and their refugial roots are not clear. Mid to low latitude regions often show parapatric patchworks of lineages and multiple refugia stable through many climatic oscillations. Particular hybrid zones may have formed more than once; while some expansions were not the same, producing reticulation and introgression in previous glacial cycles. Hybrid-zone roots are complex and deep, and considerations of their complexity can reveal evolutionary pathways of species. They are indeed windows on evolution.  相似文献   

5.
The contemporary distribution and genetic composition of biodiversity bear a signature of species’ evolutionary histories and the effects of past climatic oscillations. For many European species, the Mediterranean peninsulas of Iberia, Italy and the Balkans acted as glacial refugia and the source of range recolonization, and as a result, they contain disproportionately high levels of diversity. As these areas are particularly threatened by future climate change, it is important to understand how past climatic changes affected their biodiversity. We use an integrated approach, combining markers with different evolutionary rates and combining phylogenetic analysis with approximate Bayesian computation and species distribution modelling across temporal scales. We relate phylogeographic processes to patterns of genetic variation in Myotis escalerai, a bat species endemic to the Iberian Peninsula. We found a distinct population structure at the mitochondrial level with a strong geographic signature, indicating lineage divergence into separate glacial refugia within the Iberian refugium. However, microsatellite markers suggest higher levels of gene flow resulting in more limited structure at recent time frames. The evolutionary history of M. escalerai was shaped by the effects of climatic oscillations and changes in forest cover and composition, while its future is threatened by climatically induced range contractions and the role of ecological barriers due to competition interactions in restricting its distribution. This study warns that Mediterranean peninsulas, which provided refuge for European biodiversity during past glaciation events, may become a trap for limited dispersal and ecologically limited endemic species under future climate change, resulting in loss of entire lineages.  相似文献   

6.
Aim In this paper we investigate the evolutionary history of the Eurasian green woodpecker (Picus viridis) using molecular markers. We specifically focus on the respective roles of Pleistocene climatic oscillations and geographical barriers in shaping the current population genetics within this species. In addition, we discuss the validity of current species and subspecies limits. Location Western Palaearctic: Europe to western Russia, and Africa north of the Sahara. Methods We sequenced two mitochondrial genes and five nuclear introns for 17 Eurasian green woodpeckers. Multilocus phylogenetic analyses were conducted using maximum likelihood and Bayesian algorithms. In addition, we sequenced a fragment of the cytochrome b gene (cyt b, 427 bp) and of the Z‐linked BRM intron 15 for 113 and 85 individuals, respectively. The latter data set was analysed using population genetic methods. Results Our phylogenetic results support the monophyly of Picus viridis and suggest that this taxon comprises three allopatric/parapatric lineages distributed in North Africa, the Iberian Peninsula and Europe, respectively. The North African lineage split from the Iberian/European clade during the early Pleistocene (1.6–2.2 Ma). The divergence event between the Iberian and the European lineages occurred during the mid‐Pleistocene (0.7–1.2 Ma). Our results also support a post‐glacial range expansion of these two lineages from distinct refugia located in the Iberian Peninsula and possibly in eastern Europe or Anatolia, which led to the establishment of a secondary contact zone in southern France. Main conclusions Our results emphasize the crucial role of both Pleistocene climatic oscillations and geographical barriers (Strait of Gibraltar, Pyrenees chain) in shaping the current genetic structure of the Eurasian green woodpecker. Our molecular data, in combination with diagnosable plumage characters, suggest that the North African green woodpecker (Levaillant’s woodpecker) merits species rank as Picus vaillantii (Malherbe, 1847). The two European lineages could be distinguished by molecular and phenotypic characters over most of their respective geographical ranges, but they locally exchange genes in southern France. Consequently, we prefer to treat them as subspecies (P. viridis viridis, P. viridis sharpei) pending further studies.  相似文献   

7.
Aim East Africa is one of the most biologically diverse regions, especially in terms of endemism and species richness. Hypotheses put forward to explain this high diversity invoke a role for forest refugia through: (1) accumulation of new species due to radiation within refugial habitats, or (2) retention of older palaeoendemic species in stable refugia. We tested these alternative hypotheses using data for a diverse genus of East African forest chameleons, Kinyongia. Location East Africa. Methods We constructed a dated phylogeny for Kinyongia using one nuclear and two mitochondrial markers. We identified areas of high phylogenetic diversity (PD) and evolutionary diversity (ED), and mapped ancestral areas to ascertain whether lineage diversification could best be explained by vicariance or dispersal. Results Vicariance best explains the present biogeographic patterns, with divergence between three major Kinyongia clades (Albertine Rift, southern Eastern Arc, northern Eastern Arc) in the early Miocene/Oligocene (> 20 Ma). Lineage diversification within these clades pre‐dates the Pliocene (> 6 Ma). These dates are much older than the Plio‐Pleistocene climatic shifts associated with cladogenesis in other East African taxa (e.g. birds), and instead point to a scenario whereby palaeoendemics are retained in refugia, rather than more recent radiations within refugia. Estimates of PD show that diversity was highest in the Uluguru, Nguru and East Usambara Mountains and several lineages (from Mount Kenya, South Pare and the Uluguru Mountains) stand out as being evolutionarily distinct as a result of isolation in forest refugia. PD was lower than expected by chance, suggesting that the phylogenetic signal is influenced by an unusually low number of extant lineages with long branch lengths, which is probably due to the retention of palaeoendemic lineages. Main conclusions The biogeographic patterns associated with Kinyongia are the result of long evolutionary histories in isolation. The phylogeny is dominated by ancient lineages whose origins date back to the early Miocene/Oligocene as a result of continental wide forest fragmentation and contraction due to long term climatic changes in Africa. The maintenance of palaeoendemic lineages in refugia has contributed substantially to the remarkably high biodiversity of East Africa.  相似文献   

8.
It is now well established that Southern European peninsulas have been major glacial refugia for temperate species during Pleistocene climatic oscillations. However, substantial environmental changes occurred also within these peninsulas throughout the Pleistocene, raising questions about the role and interplay of various microevolutionary processes in shaping patterns of intraspecific diversity within these areas. Here, we investigate the patterns of genetic variation in the bank vole Myodes glareolus within the Italian peninsula. By using a panel of 13 microsatellite loci, we found more intraspecific variation than expected based on previous assessments. Indeed, both Bayesian and ordination‐based clustering analyses of variation recovered five main geographic/genetic clusters along the peninsula, with three clusters geographically restricted to the southern portion of the peninsula. This clustering is supported by previous evidences of some morphological distinctiveness among these populations. This pattern can be explained by a refugia‐within‐refugia scenario, with the occurrence of multiple sub‐refugia for the bank vole within the Italian peninsula, likely promoted by the major palaeo‐environmental changes which affected forested habitats within this area during the Pleistocene. Moreover, our results support a scenario whereby the high levels of intraspecific diversity observed within major Pleistocene refugia are better explained by dynamic microevolutionary processes occurred within these areas, rather than by long‐term demographic stability of refugial population. Finally, the narrow and isolated distribution of some of the identified lineages suggests the need for future assessments of their conservation and taxonomic status.  相似文献   

9.
Pleistocene climatic fluctuations had major impacts on desert biota in southwestern North America. During cooler and wetter periods, drought‐adapted species were isolated into refugia, in contrast to expansion of their ranges during the massive aridification in the Holocene. Here, we use Melampodium leucanthum (Asteraceae), a species of the North American desert and semi‐desert regions, to investigate the impact of major aridification in southwestern North America on phylogeography and evolution in a widespread and abundant drought‐adapted plant species. The evidence for three separate Pleistocene refugia at different time levels suggests that this species responded to the Quaternary climatic oscillations in a cyclic manner. In the Holocene, once differentiated lineages came into secondary contact and intermixed, but these range expansions did not follow the eastwardly progressing aridification, but instead occurred independently out of separate Pleistocene refugia. As found in other desert biota, the Continental Divide has acted as a major migration barrier for M. leucanthum since the Pleistocene. Despite being geographically restricted to the eastern part of the species’ distribution, autotetraploids in M. leucanthum originated multiple times and do not form a genetically cohesive group.  相似文献   

10.
Environmental changes over the Plio‐Pleistocene have been key drivers of speciation patterns and genetic diversification in high‐latitude and mesic environments, yet comparatively little is known about the evolutionary history of species in arid environments. We applied phylogenetic and phylogeographic analyses to understand the evolutionary history of Warramaba grasshoppers from the Australian arid zone, a group including sexual and parthenogenetic lineages. Sequence data (mitochondrial COI) showed that the four major sexual lineages within Warramaba most likely diverged in the Pliocene, around 2–7 million years ago. All sexual lineages exhibited considerable phylogenetic structure. Detailed analyses of the hybrid parthenogenetic species W. virgo and its sexual progenitors showed a pattern of high phylogenetic diversity and phylogeographic structure in northern lineages, and low diversity and evidence for recent expansion in southern lineages. Northern sexual lineages persisted in localized refugia over the Pleistocene, with sustained barriers promoting divergence over this period. Southern parts of the present range became periodically unsuitable during the Pleistocene, and it is into this region that parthenogenetic lineages have expanded. Our results strongly parallel those for sexual and parthenogenetic lineages of the gecko Heteronotia from the same region, indicating a highly general effect of Plio‐Pleistocene environmental change on diversification processes in arid Australia.  相似文献   

11.
The oriental green lizards of the Lacerta trilineata group are widely distributed in Greece, Anatolia, the eastern Mediterranean, the southern Caucasus, and the Zagros mountains in Iran. We studied their phylogeography using three mitochondrial markers with comprehensive sampling from most representatives of the group. Their phylogeny and divergence times (implementing fossil‐based molecular clock calibrations) were inferred using Bayesian methods, and haplotype networks were reconstructed to assess how genetic diversity and current distributional patterns were shaped. According to our phylogenetic analyses, the group constitutes a well‐supported monophylum containing several distinct evolutionary lineages with high haplotype diversity. Vicariance might explain the divergences within most lineages that have accumulated by range restriction and expansion of populations as a result of Quaternary climate oscillations and glacial refugia. However, niche divergence appears to be a major force promoting speciation, and large scale distributional patterns between lineages were shaped earlier by multiple, independent dispersals out of Anatolia during the Pliocene and early Pleistocene. The results of the present study also suggest that the group is in need of a taxonomical revision because the identified lineages and genetic diversity are not congruent with the currently recognized subspecies. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 398–408.  相似文献   

12.
The Pleistocene was characterized by climatic changes that greatly altered the distribution of organisms. Population extinctions, bottlenecks, isolation, range expansions and contractions were often associated with glaciations, leaving signatures in the spatial patterns of genetic diversity across species. Lissotriton helveticus belongs to a Pan-European lineage of newts that were strongly affected by glaciations and represent an excellent model to analyse the effect of generalized climatic changes in phylogeographic patterns. We studied the genetic diversity of the species using data from two mitochondrial and three nuclear genes analyzed in a Bayesian phylogenetic framework to investigate the historical processes shaping spatial patterns of genetic diversity. Mitochondrial haplotypes cluster in four different groups present in the Iberian Peninsula and of Pleistocene origin, probably by allopatric fragmentation. Nuclear genes present no obvious geographic structure patterns, suggesting gene flow and generalized incomplete lineage sorting. Populations north of the Pyrenees are closely related to those from northeastern Iberia, suggesting recent range expansion from this region. Historical demographic analyses indicate a demographic expansion starting about 100,000years ago and more recent population declines. Compared to other Lissotriton species, L. helveticus includes only relatively young genetic lineages, suggesting a Central European pre-Pleistocene distribution followed by complete extirpation of the species during glaciations in that area. Historical demographic trends in the Iberian Peninsula are reversed with respect to the more Mediterranean species Lissotriton boscai, indicating different responses of both species to climate changes. Diversity patterns among Lissotriton species seem to be defined by four main factors: ancestral distributions, colonization capabilities, interactions with other species and effective population sizes. Differences in these factors define two types of species, referred to as "R" (refugia) and "S" (sanctuaries) that explain part of the diversity in patterns of genetic diversity created by glaciations in Western Europe.  相似文献   

13.
Climatic and geological processes associated with glaciation cycles during the Pleistocene have been implicated in influencing patterns of genetic variation and promoting speciation of temperate flora and fauna. However, determining the factors promoting divergence and speciation is often difficult in many groups because of our limited understanding of potential vicariant barriers and connectivity between populations. Pleistocene glacial cycles are thought to have significantly influenced the distribution and diversity of subterranean invertebrates; however, impacts on subterranean aquatic vertebrates are less clear. We employed several hypothesis‐driven approaches to assess the impacts of Pleistocene climatic and geological changes on the Northern Cavefish, Amblyopsis spelaea, whose current distribution occurs near the southern extent of glacial advances in North America. Our results show that the modern Ohio River has been a significant barrier to dispersal and is correlated with patterns of genetic divergence. We infer that populations were isolated in two refugia located north and south of the Ohio River during the most recent two glacial cycles with evidence of demographic expansion in the northern isolate. Finally, we conclude that climatic and geological processes have resulted in the formation of cryptic forms and advocate recognition of two distinct phylogenetic lineages currently recognized as A. spelaea.  相似文献   

14.
Quaternary climatic oscillations and geographic barriers have strongly influenced the distribution and diversification of thermophilic species occurring in the Mediterranean Basin. The Western Mediterranean pond turtle, Mauremys leprosa, is widely distributed throughout the Iberian Peninsula, southern France and most of the Maghreb region, with two subspecies currently recognized. In this work, we used 566 samples, including 259 new individuals, across the species range, and sequenced two mitochondrial markers (cytochrome b gene and control region; 163 samples in a concatenated mtDNA dataset) and one nuclear intron (R35; 23 samples representing all identified sublineages) to study the evolutionary history of M. leprosa. We combined phylogenetic methods and phylogeographic continuous diffusion models with spatial analysis. Our results (1) show a high level of genetic structure in Morocco originated during the Pleistocene; (2) reveal two independent population expansion waves from Morocco to Tunisia and to southern Europe, which later expanded throughout the Iberian Peninsula, and (3) identify several secondary contact zones in Morocco. Our study also sheds new light on the role of geographical features (Moroccan mountains ranges and the Strait of Gibraltar) and Pleistocene climatic oscillations in shaping genetic diversity and structure of M. leprosa, and underlines the importance of the Maghreb as a differentiation centre harbouring distinct glacial refugia.  相似文献   

15.
16.
Some of the effects of past climate dynamics on plant and animal diversity make‐up have been relatively well studied, but to less extent in fungi. Pleistocene refugia are thought to harbour high biological diversity (i.e. phylogenetic lineages and genetic diversity), mainly as a product of increased reproductive isolation and allele conservation. In addition, high extinction rates and genetic erosion are expected in previously glaciated regions. Some of the consequences of past climate dynamics might involve changes in range and population size that can result in divergence and incipient or cryptic speciation. Many of these dynamic processes and patterns can be inferred through phylogenetic and coalescent methods. In this study, we first delimit species within a group of closely related edible ectomycorrhizal Amanita from North America (the American Caesar's mushrooms species complex) using multilocus coalescent‐based approaches; and then address questions related to effects of Pleistocene climate change on the diversity and genetics of the group. Our study includes extensive geographical sampling throughout the distribution range, and DNA sequences from three nuclear protein‐coding genes. Results reveal cryptic diversity and high speciation rates in refugia. Population sizes and expansions seem to be larger at midrange latitudes (Mexican highlands and SE USA). Range shifts are proportional to population size expansions, which were overall more common during the Pleistocene. This study documents responses to past climate change in fungi and also highlights the applicability of the multispecies coalescent in comparative phylogeographical analyses and diversity assessments that include ancestral species.  相似文献   

17.
The traditional southern Pleistocene refugia hypothesis in Europe has lately been challenged for several animal and plant species. The Carpathian Basin, especially at the marginal regions, is one of the recently recognized biodiversity hotspots in Europe. Marginal populations are prone to have lower genetic diversity and higher genetic differentiation than central populations. Here, we examined one mitochondrial DNA fragment (D‐loop) and nine nuclear (microsatellite) loci to describe the genetic diversity and phylogeographical pattern of fire salamander (Salamandra salamandra) populations in the Carpathian Basin with focusing on the southern margins of the Western Carpathians, where isolated populations of this species are present. Analyses of microsatellites indicated reduced genetic diversity for most of the isolated populations. Based on the mitochondrial DNA, only two haplotypes were found, whereas the analyses with the nuclear markers revealed a more recent genetic split between Western (Alpine) and Eastern (Carpathian) populations, and separated the Apuseni Mountains population (part of the Western Carpathians). Using approximate Bayesian computation analyses, we identified the most probable colonization scenario for the isolated North Hungarian Carpathian Basin populations. The split between isolated salamander populations from the central populations in the Carpathian Mountains dates back to the beginning of the Late Pleistocene, while the split between most of the Hungarian populations can be associated with the Last Glacial Maximum. We found evidence for long‐time isolation between the marginal Carpathian Basin and central populations. Our results also show that S. salamandra survived glacial periods in the temperate forests of north‐east Pannonia (North Hungarian Mountains), confirming that the Carpathian Basin served as important northerly refugia during the Pleistocene climatic oscillations.  相似文献   

18.
Mediterranean mountain ranges harbour highly endemic biota in islandlike habitats. Their topographic diversity offered the opportunity for mountain species to persist in refugial areas during episodes of major climatic change. We investigate the role of Quaternary climatic oscillations in shaping the demographic history and distribution ranges in the spider Harpactocrates ravastellus, endemic to the Pyrenees. Gene trees and multispecies coalescent analyses on mitochondrial and nuclear DNA sequences unveiled two distinct lineages with a hybrid zone around the northwestern area of the Catalan Pyrenees. The lineages were further supported by morphological differences. Climatic niche‐based species distribution models (SDMs) identified two lowland refugia at the western and eastern extremes of the mountain range, which would suggest secondary contact following postglacial expansion of populations from both refugia. Neutrality test and approximate Bayesian computation (ABC) analyses indicated that several local populations underwent severe bottlenecks followed by population expansions, which in combination with the deep population differentiation provided evidence for population survival during glacial periods in microrefugia across the mountain range, in addition to the main Atlantic and Mediterranean (western and eastern) refugia. This study sheds light on the complexities of Quaternary climatic oscillations in building up genetic diversity and local endemicity in the southern Europe mountain ranges.  相似文献   

19.
Understanding historical influences of climate and physiographic barriers in shaping patterns of biodiversity remains limited for many regions of the world. For mammals of continental Africa, phylogeographic studies, particularly for West African lineages, implicate both geographic barriers and climate oscillations in shaping small mammal diversity. In contrast, studies for southern African species have revealed conflicting phylogenetic patterns for how mammalian lineages respond to both climate change and geologic events such as river formation, especially during the Pleistocene. However, these studies were often biased by limited geographic sampling or exclusively focused on large‐bodied taxa. We exploited the broad southern African distribution of a savanna–woodland‐adapted African rodent, Gerbilliscus leucogaster (bushveld gerbil) and generated mitochondrial, autosomal and sex chromosome data to quantify regional signatures of climatic and vicariant biogeographic phenomena. Results indicate the most recent common ancestor for all G. leucogaster lineages occurred during the early Pleistocene. We documented six divergent mitochondrial lineages that diverged ~0.270–0.100 mya, each of which was geographically isolated during periods characterized by alterations to the course of the Zambezi River and its tributaries as well as regional ‘megadroughts’. Results demonstrate the presence of a widespread lineage exhibiting demographic expansion ~0.065–0.035 mya, a time that coincides with savanna–woodland expansion across southern Africa. A multilocus autosomal perspective revealed the influence of the Kafue River as a current barrier to gene flow and regions of secondary contact among divergent mitochondrial lineages. Our results demonstrate the importance of both climatic fluctuations and physiographic vicariance in shaping the distribution of southern African biodiversity.  相似文献   

20.
Refugia are critical for the maintenance of biodiversity during the periods of Quaternary climatic oscillations. The long‐term persistence of refugial populations in a large continuous refugium has resulted in a homogenous pattern of genetic structure among populations, while highly structured evolutionary lineages characterize the restriction of refugial populations to smaller subrefugia. These mechanisms have resulted in the identification of hot spots of biodiversity within putative glacial refugia. We studied phylogeography of Potamon ibericum (Brachyura: Potamidae) in the drainages of the western Caucasus biodiversity hot spot (i.e., Colchis and the Caucasus) to infer spatial genetic structure and potential refugia for a freshwater crab in this region. These areas have traditionally considered as a refugium due to the presence of Tertiary relict species. We integrated population genetic data and historical demographic analysis from cytochrome oxidase subunit I sequences and paleoclimatic data from species distribution modeling (SDM). The results revealed the lack of phylogeographic structure and provided evidence for demographic expansion. The SDM presented a rather homogenous and large refugium that extended from northeast Turkey to Colchis during the last glacial period. In contrast to these findings, previous phylogeographic study on P. ibericum of the eastern Caucasus biodiversity hot spot (i.e., Hyrcania) identified multiple independent refugia. By combining these results, we explain the significance of this important western Palearctic hot spot of biological diversity in shaping the geographic distribution of intraspecific genetic diversity in a freshwater taxon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号