首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Marella S  Mann K  Scott K 《Neuron》2012,73(5):941-950
For an animal to survive in a constantly changing environment, its behavior must be shaped by the complex milieu of sensory stimuli it detects, its previous experience, and its internal state. Although taste behaviors in the fly are relatively simple, with sugars eliciting acceptance behavior and bitter compounds avoidance, these behaviors are also plastic and are modified by intrinsic and extrinsic cues, such as hunger and sensory stimuli. Here, we show that dopamine modulates a simple taste behavior, proboscis extension to sucrose. Conditional silencing of dopaminergic neurons reduces proboscis extension probability, and increased activation of dopaminergic neurons increases extension to sucrose, but not to bitter compounds or water. One dopaminergic neuron with extensive branching in the primary taste relay, the subesophageal ganglion, triggers proboscis extension, and its activity is altered by satiety state. These studies demonstrate the marked specificity of dopamine signaling and provide a foundation to examine neural mechanisms of feeding modulation in the fly.  相似文献   

4.
Calcineurin is a Ca(2+)/calmodulin-dependent protein phosphatase involved in calcium signaling pathways. In Caenorhabditis elegans, the loss of calcineurin activity causes pleiotropic defects including hyperadaptation of sensory neurons, hypersensation to thermal difference and hyper-egg-laying when worms are refed after starvation. In this study, we report on arrd-17 as calcineurin-interacting protein-1 (cnp-1), which is a novel molecular target of calcineurin. CNP-1 interacts with the catalytic domain of the C. elegans calcineurin A subunit, TAX-6, in a yeast two-hybrid assay and is dephosphorylated by TAX-6 in vitro. cnp-1 is expressed in ASK, ADL, ASH and ASJ sensory neurons as TAX-6. It acts downstream of tax-6 in regulation of locomotion and egg-laying after starvation, ASH sensory neuron adaptation and lysine chemotaxis, that is known to be mediated by ASK neurons. Altogether, our biochemical and genetic evidence indicates that CNP-1 is a direct target of calcineurin and required in stimulated egg-laying and locomotion after starvation, adaptation to hyperosmolarity and attraction to lysine, which is modulated by calcineurin. We suggest that the phosphorylation status of CNP-1 plays an important role in regulation of refed stimulating behaviors after starvation and attraction to amino acid, which provides valuable nutritious information.  相似文献   

5.
6.
7.
Pheromone responses are highly context dependent. For example, the C.?elegans pheromone ascaroside C9 (ascr#3) is repulsive to wild-type hermaphrodites, attractive to wild-type males, and usually neutral to "social" hermaphrodites with reduced activity of the npr-1 neuropeptide receptor gene. We show here that these distinct behavioral responses arise from overlapping push-pull circuits driven by two classes of pheromone-sensing neurons. The ADL sensory neurons detect C9 and, in?wild-type hermaphrodites, drive C9 repulsion through their chemical synapses. In npr-1 mutant hermaphrodites, C9 repulsion is reduced by the recruitment of a gap junction circuit that antagonizes ADL chemical synapses. In males, ADL sensory responses are diminished; in addition, a second pheromone-sensing neuron, ASK, antagonizes C9 repulsion. The additive effects of these antagonistic circuit elements generate attractive, repulsive, or neutral pheromone responses. Neuronal modulation by circuit state and sex, and flexibility in synaptic output pathways, may permit small circuits to maximize their adaptive behavioral outputs.  相似文献   

8.
The ability of organisms to sense their nutritional environment and adjust their behavior accordingly is critical for survival. Insulin-like peptides (ilps) play major roles in controlling behavior and metabolism; however, the tissues and cells that insulin acts on to regulate these processes are not fully understood. In the fruit fly, Drosophila melanogaster, insulin signaling has been shown to function in the fat body to regulate lipid storage, but whether ilps act on the fly brain to regulate nutrient storage is not known. In this study, we manipulate insulin signaling in defined populations of neurons in Drosophila and measure glycogen and triglyceride storage. Expressing a constitutively active form of the insulin receptor (dInR) in the insulin-producing cells had no effect on glycogen or triglyceride levels. However, activating insulin signaling in the Drosulfakinin (Dsk)-producing neurons led to triglyceride accumulation and increased food consumption. The expression of ilp2, ilp3 and ilp5 was increased in flies with activated insulin signaling in the Dsk neurons, which along with the feeding phenotype, may cause the triglyceride storage phenotypes observed in these flies. In addition, expressing a constitutively active dInR in Dsk neurons resulted in decreased sleep in the fed state and less starvation-induced sleep suppression suggesting a role for insulin signaling in regulating nutrient-responsive behaviors. Together, these data support a role for insulin signaling in the Dsk-producing neurons for regulating behavior and maintaining metabolic homeostasis.  相似文献   

9.
10.
The effect of starvation and subsequent re‐feeding to satiation on compensatory growth performance, insulin and blood serum values were investigated in juvenile Persian sturgeon (Acipencer persicus) with an average weight 108.04 ± 0.28 g (mean ± SEM) and in the same rearing condition over an 8‐week period. Sturgeons were allocated to one of five feeding treatments: controls (C, continuous feeding), W1 (1 week starvation), W2 (2 weeks starvation), W3 (3 weeks starvation) and W4 (4 weeks starvation), followed by a single 4 weeks of re‐feeding to satiation. Changes in growth performance and blood serum indices were examined at the end of weeks 4 and 8. Body weight, specific growth rate (SGR), condition factor (CF) and weight gain were determined to have significantly decreased during starvation. Fish starved for 1 week reached the same weight as the control fish after re‐feeding for 4 weeks, indicating that complete compensatory growth occurred. Although the specific growth rate in W2, W3 and W4 fish was greater than that in the control fish after re‐feeding, W2, W3 and W4 fish did not reach the same body weight as control fish at the end of re‐feeding period, and showed partial compensation only. Blood plasma, glucose and insulin concentrations did not change significantly during starvation and re‐feeding (P > 0.05). This suggests that sturgeon are able to maintain glycaemia during starvation, probably due to their non‐carbohydrate dietary source. Plasma total lipid and triglyceride levels increased in starvation treatments, whereas the increases were significant only in W3 treatment (P < 0.05). After a 4‐week re‐feeding period, their levels decreased in comparison to the starvation periods. Increases in plasma total lipid and triglyceride levels appear to be due to their roles as preferred nutrients for mobilization in Persian sturgeon and the magnitude and duration of compensatory growth depended on the length of food deprivation.  相似文献   

11.
12.
You YJ  Kim J  Raizen DM  Avery L 《Cell metabolism》2008,7(3):249-257
Despite the prevalence of obesity and its related diseases, the signaling pathways for appetite control and satiety are not clearly understood. Here we report C. elegans quiescence behavior, a cessation of food intake and movement that is possibly a result of satiety. C. elegans quiescence shares several characteristics of satiety in mammals. It is induced by high-quality food, it requires nutritional signals from the intestine, and it depends on prior feeding history: fasting enhances quiescence after refeeding. During refeeding after fasting, quiescence is evoked, causing gradual inhibition of food intake and movement, mimicking the behavioral sequence of satiety in mammals. Based on these similarities, we propose that quiescence results from satiety. This hypothesized satiety-induced quiescence is regulated by peptide signals such as insulin and TGF-beta. The EGL-4 cGMP-dependent protein kinase functions downstream of insulin and TGF-beta in sensory neurons including ASI to control quiescence in response to food intake.  相似文献   

13.
14.
In the model organism Caenorhabditis elegans, a class of small molecule signals called ascarosides regulate development, mating, and social behaviors. Ascaroside production has been studied in the predominant sex, the hermaphrodite, but not in males, which account for less than 1% of wild-type worms grown under typical laboratory conditions. Using HPLC-MS-based targeted metabolomics, we show that males also produce ascarosides and that their ascaroside profile differs markedly from that of hermaphrodites. Whereas hermaphrodite ascaroside profiles are dominated by ascr#3, containing an α,β-unsaturated fatty acid, males predominantly produce the corresponding dihydro-derivative ascr#10. This small structural modification profoundly affects signaling properties: hermaphrodites are retained by attomole-amounts of male-produced ascr#10, whereas hermaphrodite-produced ascr#3 repels hermaphrodites and attracts males. Male production of ascr#10 is population density-dependent, indicating sensory regulation of ascaroside biosynthesis. Analysis of gene expression data supports a model in which sex-specific regulation of peroxisomal β-oxidation produces functionally different ascaroside profiles.  相似文献   

15.
An important question in contemporary sensory neuroscience is how animals perceive their environment and make appropriate behavioral choices based on chemical perceptions. The fruit fly Drosophila melanogaster exhibits robust tastant and odor-evoked behaviors. Understanding how the gustatory and olfactory systems support the perception of these contact and volatile chemicals and translate them into appropriate attraction or avoidance behaviors has made an unprecedented contribution to our knowledge of the organization of chemosensory systems. In this review, I begin by describing the receptors and signaling mechanisms of the Drosophila gustatory and olfactory systems and then highlight their involvement in the control of simple and complex behaviors. The topics addressed include feeding behavior, learning and memory, navigation behavior, neuropeptide modulation of chemosensory behavior, and I conclude with a discussion of recent work that provides insight into pheromone signaling pathways.  相似文献   

16.
Brugia malayi is a parasitic nematode that causes lymphatic filariasis in humans. Here the solution structure of the forkhead DNA binding domain of Brugia malayi DAF‐16a, a putative ortholog of Caenorhabditis elegans DAF‐16, is reported. It is believed to be the first structure of a forkhead or winged helix domain from an invertebrate. C. elegans DAF‐16 is involved in the insulin/IGF‐I signaling pathway and helps control metabolism, longevity, and development. Conservation of sequence and structure with human FOXO proteins suggests that B. malayi DAF‐16a is a member of the FOXO family of forkhead proteins. Proteins 2014; 82:3490–3496. © 2014 Wiley Periodicals, Inc.  相似文献   

17.

Background  

Polymodal, nociceptive sensory neurons are key cellular elements of the way animals sense aversive and painful stimuli. In Caenorhabditis elegans, the polymodal nociceptive ASH sensory neurons detect aversive stimuli and release glutamate to generate avoidance responses. They are thus useful models for the nociceptive neurons of mammals. While several molecules affecting signal generation and transduction in ASH have been identified, less is known about transmission of the signal from ASH to downstream neurons and about the molecules involved in its modulation.  相似文献   

18.

Background  

Avoidance of noxious stimuli is essential for the survival of an animal in its natural habitat. Some avoidance responses require polymodal sensory neurons, which sense a range of diverse stimuli, whereas other stimuli require a unimodal sensory neuron, which senses a single stimulus. Polymodality might have evolved to help animals quickly detect and respond to diverse noxious stimuli. Nematodes inhabit diverse habitats and most nematode nervous systems are composed of a small number of neurons, despite a wide assortment in nematode sizes. Given this observation, we speculated that cellular contribution to stereotyped avoidance behaviors would also be conserved between nematode species. The ASH neuron mediates avoidance of three classes of noxious stimuli in Caenorhabditis elegans. Two species of parasitic nematodes also utilize the ASH neuron to avoid certain stimuli. We wanted to extend our knowledge of avoidance behaviors by comparing multiple stimuli in a set of free-living nematode species.  相似文献   

19.
The nematode C. elegans utilizes a relatively simple neural circuit to mediate avoidance responses to noxious stimuli such as the volatile odorant octanol. This avoidance behavior is modulated by dopamine. cat-2 mutant animals that are deficient in dopamine biosynthesis have an increased response latency to octanol compared to wild type animals, and this defect can be fully restored with the application of exogenous dopamine. Because this avoidance behavior is mediated by glutamatergic signaling between sensory neurons and premotor interneurons, we investigated the genetic interactions between dopaminergic signaling and ionotropic glutamate receptors. cat-2 mutant animals lacking either the GLR-1 or GLR-2 AMPA/kainate receptors displayed an increased response latency to octanol, which could be restored via exogenous dopamine. However, whereas cat-2 mutant animals lacking the NMR-1 NMDA receptor had increased response latency to octanol they were insensitive to exogenous dopamine. Mutants that lacked both AMPA/kainate and NMDA receptors were also insensitive to exogenous dopamine. Our results indicate that dopamine modulation of octanol avoidance requires NMR-1, consistent with NMR-1 as a potential downstream signaling target for dopamine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号