共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ireen Köllmer Ondřej Novák Miroslav Strnad Thomas Schmülling Tomáš Werner 《The Plant journal : for cell and molecular biology》2014,78(3):359-371
Degradation of the plant hormone cytokinin is catalyzed by cytokinin oxidase/dehydrogenase (CKX) enzymes. The Arabidopsis thaliana genome encodes seven CKX proteins which differ in subcellular localization and substrate specificity. Here we analyze the CKX7 gene, which to the best of our knowledge has not yet been studied. pCKX7:GUS expression was detected in the vasculature, the transmitting tissue and the mature embryo sac. A CKX7–GFP fusion protein localized to the cytosol, which is unique among all CKX family members. 35S:CKX7‐expressing plants developed short, early terminating primary roots with smaller apical meristems, contrasting with plants overexpressing other CKX genes. The vascular bundles of 35S:CKX7 primary roots contained only protoxylem elements, thus resembling the wol mutant of the CRE1/AHK4 receptor gene. We show that CRE1/AHK4 activity is required to establish the CKX7 overexpression phenotype. Several cytokinin metabolites, in particular cis‐zeatin (cZ) and N‐glucoside cytokinins, were depleted stronger in 35S:CKX7 plants compared with plants overexpressing other CKX genes. Interestingly, enhanced protoxylem formation together with reduced primary root growth was also found in the cZ‐deficient tRNA isopentenyltransferase mutant ipt2,9. However, different cytokinins were similarly efficient in suppressing 35S:CKX7 and ipt2,9 vascular phenotypes. Therefore, we hypothesize that the pool of cytosolic cytokinins is particularly relevant in the root procambium where it mediates the differentiation of vascular tissues through CRE1/AHK4. Taken together, the distinct consequences of CKX7 overexpression indicate that the cellular compartmentalization of cytokinin degradation and substrate preference of CKX isoforms are relevant parameters that define the activities of the hormone. 相似文献
3.
Zhang H Han W De Smet I Talboys P Loya R Hassan A Rong H Jürgens G Paul Knox J Wang MH 《The Plant journal : for cell and molecular biology》2010,64(5):764-774
It is well known that abscisic acid (ABA) can halt meristems for long periods without loss of meristem function, and can also promote root growth at low concentrations, but the mechanisms underlying such regulation are largely unknown. Here we show that ABA promotes stem cell maintenance in Arabidopsis root meristems by both promoting the quiescence of the quiescent centre (QC) and suppressing the differentiation of stem cells and their daughters. We demonstrate that these two mechanisms of regulation by ABA involve distinct pathways, and identify components in each pathway. Our findings demonstrate a cellular mechanism for a positive role for ABA in promoting root meristem maintenance and root growth in Arabidopsis. 相似文献
4.
Irina Pavelescu Josep Vilarrasa‐Blasi Ainoa Planas‐Riverola Mary‐Paz González‐García Ana I Caño‐Delgado Marta Ibañes 《Molecular systems biology》2018,14(1)
Plant roots grow due to cell division in the meristem and subsequent cell elongation and differentiation, a tightly coordinated process that ensures growth and adaptation to the changing environment. How the newly formed cells decide to stop elongating becoming fully differentiated is not yet understood. To address this question, we established a novel approach that combines the quantitative phenotypic variability of wild‐type Arabidopsis roots with computational data from mathematical models. Our analyses reveal that primary root growth is consistent with a Sizer mechanism, in which cells sense their length and stop elongating when reaching a threshold value. The local expression of brassinosteroid receptors only in the meristem is sufficient to set this value. Analysis of roots insensitive to BR signaling and of roots with gibberellin biosynthesis inhibited suggests distinct roles of these hormones on cell expansion termination. Overall, our study underscores the value of using computational modeling together with quantitative data to understand root growth. 相似文献
5.
6.
7.
Temperature‐compensated cell production rate and elongation zone length in the root of Arabidopsis thaliana 下载免费PDF全文
Xiaoli Yang Gang Dong K. Palaniappan Guohua Mi Tobias I. Baskin 《Plant, cell & environment》2017,40(2):264-276
To understand how root growth responds to temperature, we used kinematic analysis to quantify division and expansion parameters in the root of Arabidopsis thaliana. Plants were grown at temperatures from 15 to 30 °C, given continuously from germination. Over these temperatures, root length varies more than threefold in the wild type but by only twofold in a double mutant for phytochrome‐interacting factor 4 and 5. For kinematics, the spatial profile of velocity was obtained with new software, Stripflow. We find that 30 °C truncates the elongation zone and curtails cell production, responses that probably reflect the elicitation of a common pathway for handling severe stresses. Curiously, rates of cell division at all temperatures are closely correlated with rates of radial expansion. Between 15 to 25 °C, root growth rate, maximal elemental elongation rate, and final cell length scale positively with temperature whereas the length of the meristem scales negatively. Non‐linear temperature scaling characterizes meristem cell number, time to transit through either meristem or elongation zone, and average cell division rate. Surprisingly, the length of the elongation zone and the total rate of cell production are temperature invariant, constancies that have implications for our understanding of how the underlying cellular processes are integrated. 相似文献
8.
《Current biology : CB》2022,32(9):1974-1985.e3
9.
10.
11.
Suzuki T Inagaki S Nakajima S Akashi T Ohto MA Kobayashi M Seki M Shinozaki K Kato T Tabata S Nakamura K Morikami A 《The Plant journal : for cell and molecular biology》2004,38(4):673-684
Root apical meristem (RAM) and shoot apical meristem (SAM) are vital for the correct development of the plant. The direction, frequency, and timing of cell division must be tightly controlled in meristems. Here, we isolated new Arabidopsis mutants with shorter roots and fasciated stems. In the tonsoku (tsk) mutant, disorganized RAM and SAM formation resulted from the frequent loss of proper alignment of the cell division plane. Irregular cell division also occurred in the tsk embryo, and the size of cells in meristems and embryo in tsk mutant was larger than in the wild type. In the enlarged SAM of the tsk mutant, multiple centers of cells expressing WUSCHEL (WUS) were observed. In addition, expression of SCARECROW (SCR) in the quiescent center (QC) disappeared in the disorganized RAM of tsk mutant. These results suggest that disorganized cell arrangements in the tsk mutants result in disturbed positional information required for the determination of cell identity. The TSK gene was found to encode a protein with 1311 amino acids that possesses two types of protein-protein interaction motif, leucine-glycine-asparagine (LGN) repeats and leucine-rich repeats (LRRs). LGN repeats are present in animal proteins involved in asymmetric cell division, suggesting the possible involvement of TSK in cytokinesis. On the other hand, the localization of the TSK-GFP (green fluorescent protein) fusion protein in nuclei of tobacco BY-2 cells and phenotypic similarity of tsk mutants to other fasciated mutants suggest that the tsk mutation may cause disorganized cell arrangements through defects in genome maintenance. 相似文献
12.
N. P. Demchenko I. B. Kalimova K. N. Demchenko 《Russian Journal of Plant Physiology》2005,52(2):220-228
The effect of 10–6 and 10–4 M NiSO4 on cell growth, proliferation, and differentiation was studied over 48 h in seminal and lateral roots of five-day-old Triticum aestivum seedlings. 10–6 M NiSO4 did not significantly affect the root system, whereas 10–4 M NiSO4 inhibited its development. However, 10–6 M NiSO4 disturbed the contacts between the groups of closely related cells of the rhizodermis in the meristem. In the exodermis, an additional layer of cells was formed. At the nickel concentration of 10–4 M, cell divisions in the outer layers of the root cells and metaxylem ceased earlier than in other root tissues positioned both centripetally and acropetally. Differentiation of protophloem sieve elements was completed in the meristem but at a greater distance from the root tip. Cell elongation started at the same distance from the root tip as in control plants. The rate of elongation decreased, and acropetally it stopped. Therefore, the cells of the xylem and metaphloem started to differentiate, and primordia of lateral roots were initiated and formed closer to the root tip. At a lethal concentration (10–4 M), nickel induced necroses of elongating cells of the endodermis and pericycle. Nickel is supposed to enter the tissues of the central cylinder predominantly via the protoxylem and rapidly translocate along the xylem. As a result, the incubation of the roots at this concentration for 48 h almost did not affect the development of the phloem and probably sugar unloading, that makes possible to maintain the growth of meristematic cells and the cell division of the most important tissues for longer time.Translated from Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 250–258.Original Russian Text Copyright © 2005 by N. Demchenko, Kalimova, K. Demchenko.This revised version was published online in April 2005 with a corrected cover date. 相似文献
13.
14.
Functional genomics of cell elongation in developing cotton fibers 总被引:36,自引:0,他引:36
Arpat AB Waugh M Sullivan JP Gonzales M Frisch D Main D Wood T Leslie A Wing RA Wilkins TA 《Plant molecular biology》2004,54(6):911-929
15.
Jing Fu Xinglin Zhang Jiaming Liu Xudong Gao Juan Bai Yueling Hao Hongchang Cui 《The Plant journal : for cell and molecular biology》2021,107(4):1029-1039
Root growth relies on both cell division and cell elongation, which occur in the meristem and elongation zones, respectively. SCARECROW (SCR) and SHORT-ROOT (SHR) are GRAS family genes essential for root growth and radial patterning in the Arabidopsis root. Previous studies showed that SCR and SHR promote root growth by suppressing cytokinin response in the meristem, but there is evidence that SCR expressed beyond the meristem is also required for root growth. Here we report a previously unknown role for SCR in promoting cell elongation. Consistent with this, we found that the scr mutant accumulated a higher level of reactive oxygen species (ROS) in the elongation zone, which is probably due to decreased expression of peroxidase gene 3, which consumes hydrogen peroxide in a reaction leading to Casparian strip formation. When the oxidative stress response was blocked in the scr mutant by mutation in ABSCISIC ACID 2 (ABA2) or when the redox status was ameliorated by the upbeat 1 (upb1) mutant, the root became significantly longer, with longer cells and a larger and more mitotically active meristem. Remarkably, however, the stem cell and radial patterning defects in the double mutants still persisted. Since ROS and peroxidases are essential for endodermal differentiation, these results suggest that SCR plays a role in coordinating cell elongation, endodermal differentiation, redox homeostasis and oxidative stress response in the root. We also provide evidence that this role of SCR is independent of SHR, even though they function similarly in other aspects of root growth and development. 相似文献
16.
Synergistic action of auxin and cytokinin mediates aluminum‐induced root growth inhibition in Arabidopsis 下载免费PDF全文
Jiajia Liu Bing Zhang Wenjing Meng Bruno Müller Ken‐ichiro Hayashi Xiansheng Zhang Zhong Zhao Ive De Smet Zhaojun Ding 《EMBO reports》2017,18(7):1213-1230
Auxin acts synergistically with cytokinin to control the shoot stem‐cell niche, while both hormones act antagonistically to maintain the root meristem. In aluminum (Al) stress‐induced root growth inhibition, auxin plays an important role. However, the role of cytokinin in this process is not well understood. In this study, we show that cytokinin enhances root growth inhibition under stress by mediating Al‐induced auxin signaling. Al stress triggers a local cytokinin response in the root‐apex transition zone (TZ) that depends on IPTs, which encode adenosine phosphate isopentenyltransferases and regulate cytokinin biosynthesis. IPTs are up‐regulated specifically in the root‐apex TZ in response to Al stress and promote local cytokinin biosynthesis and inhibition of root growth. The process of root growth inhibition is also controlled by ethylene signaling which acts upstream of auxin. In summary, different from the situation in the root meristem, auxin acts with cytokinin in a synergistic way to mediate aluminum‐induced root growth inhibition in Arabidopsis. 相似文献
17.
Baskin TI 《Plant molecular biology》2000,43(5-6):545-554
This review examines under what circumstances the rate of cell division among cells of the root meristem is known to vary. First, methods are compared that have been used to quantify cell division rate. These can be grouped as being either cytological, in which the rate of accumulation of cells in a particular phase of the cell cycle is determined based on some form of cytological labeling, or kinematic, in which the rate of cell accumulation is determined from the net movement of cells. Then, evidence is reviewed as to whether cell division rates vary between different tissues or cell types, between different positions in the root, or finally between different environments. The evidence is consistent with cells dividing at a constant rate, and well documented examples where cell division rate changes substantially are rare. The constancy of cell division rate contrasts with the number of dividing cells, which varies extensively, and implies that a major point for cell cycle control is governing the exit from the proliferative state at the basal boundary of the meristem. 相似文献
18.
Abstract Exposure of Zea mays seedlings to a continuous electromagnetic field (EMF) for 30 h induced a 30% stimulation in the rate of root elongation compared with the controls. It also resulted in a significant increase of cell expansion, in both the acropetal (metaxylem cell lineage) and basipetal (root cap cells) direction. In addition, in EMF-exposed roots a precocious structural disorder was observed both in differentiating metaxylem cells and root cap cells. All these features may be consistent with an advanced differentiation of root cells that are programmed to die. EMF treatment also resulted in a significant reduction in the size of the quiescent centre in the root apical meristem. The extent to which these responses are causally linked is discussed. 相似文献
19.
Sodium butyrate at 5 mM in aerated White's medium reduced the mitotic index in root meristems of seedlings of Pisum sativum to < 1% after 12 h. This effect was lessened as the butyrate concentrations were lowered. The fraction of the root meristem nuclei in G2 increased to ~ 70% after 12 h in butyrate. After 12 h exposure to butyrate, seedlings transferred lo medium without butyrate gradually re-established their normal root meristem mitotic pattern, with a burst of mitosis at 10 h after the transfer. Even a brief exposure to butyrate inhibited DNA synthesis, and nuclei released from butyrate exposure were still unable to resume normal DNA synthesis even after 12 h. This information suggests that butyrate halts progression through the cell cycle by arresting meristem nuclei in G2 and inhibiting DNA synthesis. 相似文献
20.
Ticconi CA Delatorre CA Lahner B Salt DE Abel S 《The Plant journal : for cell and molecular biology》2004,37(6):801-814
Plants have evolved complex strategies to maintain phosphate (Pi) homeostasis and to maximize Pi acquisition when the macronutrient is limiting. Adjustment of root system architecture via changes in meristem initiation and activity is integral to the acclimation process. However, the mechanisms that monitor external Pi status and interpret the nutritional signal remain to be elucidated. Here, we present evidence that the Pi deficiency response, pdr2, mutation disrupts local Pi sensing. The sensitivity and amplitude of metabolic Pi-starvation responses, such as Pi-responsive gene expression or accumulation of anthocyanins and starch, are enhanced in pdr2 seedlings. However, the most conspicuous alteration of pdr2 is a conditional short-root phenotype that is specific for Pi deficiency and caused by selective inhibition of root cell division followed by cell death below a threshold concentration of about 0.1 mm external Pi. Measurements of general Pi uptake and of total phosphorus (P) in root tips exclude a defect in high-affinity Pi acquisition. Rescue of root meristem activity in Pi-starved pdr2 by phosphite (Phi), a non-metabolizable Pi analog, and divided-root experiments suggest that pdr2 disrupts sensing of low external Pi availability. Thus, PDR2 is proposed to function at a Pi-sensitive checkpoint in root development, which monitors environmental Pi status, maintains and fine-tunes meristematic activity, and finally adjusts root system architecture to maximize Pi acquisition. 相似文献