首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over a third of the US adult population has hypertriglyceridemia, resulting in an increased risk of atherosclerosis, pancreatitis, and metabolic syndrome. Lipoprotein lipase (LPL), a dimeric enzyme, is the main lipase responsible for TG clearance from the blood after food intake. LPL requires an endoplasmic reticulum (ER)-resident, transmembrane protein known as lipase maturation factor 1 (LMF1) for secretion and enzymatic activity. LMF1 is believed to act as a client specific chaperone for dimeric lipases, but the precise mechanism by which LMF1 functions is not understood. Here, we examine which domains of LMF1 contribute to dimeric lipase maturation by assessing the function of truncation variants. N-terminal truncations of LMF1 show that all the domains are necessary for LPL maturation. Fluorescence microscopy and protease protection assays confirmed that these variants were properly oriented in the ER. We measured cellular levels of LMF1 and found that it is expressed at low levels and each molecule of LMF1 promotes the maturation of 50 or more molecules of LPL. Thus we provide evidence for the critical role of the N-terminus of LMF1 for the maturation of LPL and relevant ratio of chaperone to substrate.  相似文献   

2.
Lipase maturation factor 1 (Lmf1) is an endoplasmic reticulum (ER) membrane protein involved in the posttranslational folding and/or assembly of lipoprotein lipase (LPL) and hepatic lipase (HL) into active enzymes. Mutations in Lmf1 are associated with diminished LPL and HL activities ("combined lipase deficiency") and result in severe hypertriglyceridemia in mice as well as in human subjects. Here, we investigate whether endothelial lipase (EL) also requires Lmf1 to attain enzymatic activity. We demonstrate that cells harboring a (cld) loss-of-function mutation in the Lmf1 gene are unable to generate active EL, but they regain this capacity after reconstitution with the Lmf1 wild type. Furthermore, we show that cellular EL copurifies with Lmf1, indicating their physical interaction in the ER. Finally, we determined that post-heparin phospholipase activity in a patient with the LMF1(W464X) mutation is reduced by more than 95% compared with that in controls. Thus, our study indicates that EL is critically dependent on Lmf1 for its maturation in the ER and demonstrates that Lmf1 is a required factor for all three vascular lipases, LPL, HL, and EL.  相似文献   

3.
Folding of proteins entering the secretory pathway in mammalian cells frequently requires the insertion of disulfide bonds. Disulfide insertion can result in covalent linkages found in the native structure as well as those that are not, so‐called non‐native disulfides. The pathways for disulfide formation are well characterized, but our understanding of how non‐native disulfides are reduced so that the correct or native disulfides can form is poor. Here, we use a novel assay to demonstrate that the reduction in non‐native disulfides requires NADPH as the ultimate electron donor, and a robust cytosolic thioredoxin system, driven by thioredoxin reductase 1 (TrxR1 or TXNRD1). Inhibition of this reductive pathway prevents the correct folding and secretion of proteins that are known to form non‐native disulfides during their folding. Hence, we have shown for the first time that mammalian cells have a pathway for transferring reducing equivalents from the cytosol to the ER, which is required to ensure correct disulfide formation in proteins entering the secretory pathway.  相似文献   

4.
Most proteins destined for the extracellular space require disulfide bonds for folding and stability. Disulfide bonds are introduced co- and post-translationally in endoplasmic reticulum (ER) cargo in a redox relay that requires a terminal electron acceptor. Oxygen can serve as the electron acceptor in vitro, but its role in vivo remains unknown. Hypoxia causes ER stress, suggesting a role for oxygen in protein folding. Here we demonstrate the existence of two phases of disulfide bond formation in living mammalian cells, with differential requirements for oxygen. Disulfide bonds introduced rapidly during protein synthesis can occur without oxygen, whereas those introduced during post-translational folding or isomerization are oxygen dependent. Other protein maturation processes in the secretory pathway, including ER-localized N-linked glycosylation, glycan trimming, Golgi-localized complex glycosylation, and protein transport, occur independently of oxygen availability. These results suggest that an alternative electron acceptor is available transiently during an initial phase of disulfide bond formation and that post-translational oxygen-dependent disulfide bond formation causes hypoxia-induced ER stress.  相似文献   

5.
Mutations in lipase maturation factor 1 (LMF1) are associated with severe hypertriglyceridemia in mice and human subjects. The underlying cause is impaired lipid clearance due to lipase deficiency. LMF1 is a chaperone of the endoplasmic reticulum (ER) and it is critically required for the post-translational activation of three vascular lipases: lipoprotein lipase (LPL), hepatic lipase (HL) and endothelial lipase (EL). As LMF1 is only required for the maturation of homodimeric, but not monomeric, lipases, it is likely involved in the assembly of inactive lipase subunits into active enzymes and/or the stabilization of active dimers. Herein, we provide an overview of current understanding of LMF1 function and propose that it may play a regulatory role in lipase activation and lipid metabolism. Further studies will be required to test this hypothesis and elucidate the full spectrum of phenotypes in combined lipase deficiency. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.  相似文献   

6.
Considering the physiological Ca2+ dynamics within the ER (endoplasmic reticulum), it remains unclear how efficient protein folding is maintained in living cells. Thus, utilizing the strictly folding-dependent activity and secretion of LPL (lipoprotein lipase), we evaluated the impact of ER Ca2+ content and mitochondrial contribution to Ca2+-dependent protein folding. Exhaustive ER Ca2+ depletion by inhibition of sarcoplasmic/endoplasmic reticulum Ca2+-ATPases caused strong, but reversible, reduction of cell-associated and released activity of constitutive and adenovirus-encoded human LPL in CHO-K1 (Chinese-hamster ovary K1) and endothelial cells respectively, which was not due to decline of mRNA or intracellular protein levels. In contrast, stimulation with the IP3 (inositol 1,4,5-trisphosphate)-generating agonist histamine only moderately and transiently affected LPL maturation in endothelial cells that paralleled a basically preserved ER Ca2+ content. However, in the absence of extracellular Ca2+ or upon prevention of transmitochondrial Ca2+ flux, LPL maturation discontinued upon histamine stimulation. Collectively, these data indicate that Ca2+-dependent protein folding in the ER is predominantly controlled by intraluminal Ca2+ and is largely maintained during physiological cell stimulation owing to efficient ER Ca2+ refilling. Since Ca2+ entry and mitochondrial Ca2+ homoeostasis are crucial for continuous Ca2+-dependent protein maturation in the ER, their pathological alterations may result in dysfunctional protein folding.  相似文献   

7.
Three of the five disulfide bonds in the glycoprotein hormone alpha-subunit (GPH-alpha) form a cystine knot motif that stabilizes a three-loop antiparallel structure. Previously, we described a mutant (alpha(k)) that contained only the three knot disulfide bonds and demonstrated that the cystine knot was necessary and sufficient for efficient GPH-alpha folding and secretion. In this study, we used alpha(k) as a model to study the intracellular GPH-alpha folding pathway. Cystine knot formation proceeded through a 1-disulfide intermediate that contained the 28-82 disulfide bond. Formation of disulfide bond 10-60, then disulfide bond 32-84, followed the formation of 28-82. Whether the two non-cystine knot bonds 7-31 and 59-87 could form independent of the knot was also tested. Disulfide bond 7-31 formed rapidly, whereas 59-87 did not form when all cysteine residues of the cystine knot were converted to alanine, suggesting that 7-31 forms early in the folding pathway and that 59-87 forms during or after cystine knot formation. Finally, loop 2 of GPH-alpha has been shown to be very flexible, suggesting that loop 2 does not actively drive GPH-alpha folding. To test this, we replaced residues 36-55 in the flexible loop 2 with an artificially flexible glycine chain. Consistent with our hypothesis, folding and secretion were unaffected when loop 2 was replaced with the glycine chain. Based on these findings, we describe a model for the intracellular folding pathway of GPH-alpha and discuss how these findings may provide insight into the folding mechanisms of other cystine knot-containing proteins.  相似文献   

8.
Combined lipase deficiency (cld) is a recessively inherited disorder in mice associated with a deficiency of LPL and hepatic lipase (HL) activity. LPL is synthesized in cld tissues but is retained in the endoplasmic reticulum (ER), whereas mouse HL (mHL) is secreted but inactive. In this study we investigated the effect of cld on the secretion of human HL (hHL) protein mass and activity. Differentiated liver cell lines were derived from cld mice and their normal heterozygous (het) littermates by transformation of hepatocytes with SV40 large T antigen. After transient transfection with lipase expression constructs, secretion of hLPL activity from cld cells was only 12% of that from het cells. In contrast, the rate of secretion of hHL activity and protein mass per unit of expressed hHL mRNA was identical for the two cell lines. An intermediate effect was observed for mHL, with a 46% reduction in secretion of activity from cld cells. The ER glucosidase inhibitor, castanospermine, decreased secretion of both hLPL and hHL from het cells by approximately 70%, but by only approximately 45% from cld cells. This is consistent with data suggesting that cld may result from a reduced concentration of the ER chaperone calnexin. In conclusion, our results demonstrate a differential effect of cld on hLPL, mHL, and hHL secretion, suggesting differential requirements for activation and exit of the enzymes from the ER.  相似文献   

9.
In human cells, Ero1-Lalpha and -Lbeta (hEROs) regulate oxidative protein folding by selectively oxidizing protein disulfide isomerase. Specific protein--protein interactions are probably crucial for regulating the formation, isomerization and reduction of disulfide bonds in the endoplasmic reticulum (ER). To identify molecules involved in ER redox control, we searched for proteins interacting with Ero1-Lalpha. Here, we characterize a novel ER resident protein (ERp44), which contains a thioredoxin domain with a CRFS motif and is induced during ER stress. ERp44 forms mixed disulfides with both hEROs and cargo folding intermediates. Whilst the interaction with transport-competent Ig-K chains is transient, ERp44 binds more stably with J chains, which are retained in the ER and eventually degraded by proteasomes. ERp44 does not bind a short-lived ribophorin mutant lacking cysteines. Its overexpression alters the equilibrium of the different Ero1-Lalpha redox isoforms, suggesting that ERp44 may be involved in the control of oxidative protein folding.  相似文献   

10.
Objective: We evaluated the effect of adipocyte‐derived lipoprotein lipase (LPL) on macrophage activation and monocyte adhesion and the role of fatty acids in these effects. Research Methods and Procedures: 3T3‐L1 adipocytes were incubated with heparin or insulin to induce LPL secretion; then adipocyte conditioned media (CM) were added to cultured J774 macrophages or human aortic endothelial cells (HAECs). Macrophage cytokine production and monocyte adhesion to HAECs were determined. Results: Incubation of macrophages with heparin‐ or insulin‐treated adipocyte CM increased tumor necrosis factor α, interleukin‐6, and nitric oxide production by these cells. LPL neutralization and heparinase treatment prevented these effects. Addition of active LPL or palmitate to cultured macrophages replicated these effects. Blockade of leptin also reduced the effect of insulin‐treated adipocyte CM on macrophage inflammatory changes. Induction of macrophage cytokine secretion by leptin was prevented by LPL immunoneutralization. Finally, addition of CM of heparin‐ or insulin‐treated adipocytes to HAECs stimulated monocyte adhesion to these cells, an effect that was abrogated by an anti‐LPL antibody. This effect was reproduced by treating HAECs with active LPL or palmitate. Discussion: These results point to an effect of LPL‐mediated lipolysis in macrophage activation and monocyte adhesion.  相似文献   

11.
Conformation, structure, and oligomeric state of immunoglobulins not only control quality and functional properties of antibodies but are also critical for immunoglobulins secretion. Unassembled immunoglobulin heavy chains are retained intracellularly by delayed folding of the C(H)1 domain and irreversible interaction of BiP with this domain. Here we show that the three C(H)1 cysteines play a central role in immunoglobulin folding, assembly, and secretion. Remarkably, ablating all three C(H)1 cysteines negates retention and enables BiP cycling and non-canonical folding and assembly. This phenomenon is explained by interdependent formation of intradomain and interchain disulfides, although both bonds are dispensable for secretion. Substituting Cys-195 prevents formation not only of the intradomain disulfide, but also of the interchain disulfide bond with light chain, BiP displacement, and secretion. Mutating the light chain-interacting Cys-128 hinders disulfide bonding of intradomain cysteines, allowing their opportunistic bonding with light chain, without hampering secretion. We propose that the role of C(H)1 cysteines in immunoglobulin assembly and secretion is not simply to engage in disulfide bridges, but to direct proper folding and interact with the retention machinery.  相似文献   

12.
Members of the protein-disulfide isomerase superfamily catalyze the formation of intra- and intermolecular disulfide bonds, a rate-limiting step of protein folding in the endoplasmic reticulum (ER). Here we compared maturation of one obligate and two facultative calnexin substrates in cells with and without ERp57, the calnexin-associated, glycoprotein-specific oxidoreductase. ERp57 deletion did not prevent the formation of disulfide bonds during co-translational translocation of nascent glycopolypeptides in the ER. It affected, however, the post-translational phases of oxidative influenza virus hemagglutinin (HA) folding, resulting in significant loss of folding efficiency for this obligate calnexin substrate. Without ERp57, HA also showed reduced capacity to recover from an artificially induced aberrant conformation, thus revealing a crucial role of ERp57 during post-translational reshuffling to the native set of HA disulfides. ERp57 deletion did not affect maturation of the model facultative calnexin substrates E1 and p62 (and of most cellular proteins, as shown by lack of induction of ER stress). ERp72 was identified as one of the ER-resident oxidoreductases associating with the orphan ERp57 substrates to maintain their folding competence.  相似文献   

13.
Disulfide bonds are found in many proteins associated with the cell wall of Escherichia coli, and for some of these proteins the disulfide bond is critical to their stability and function. One protein found to contain a disulfide bond is the essential cell division protein FtsN, but the importance of this bond to the protein's structural integrity is unclear. While it evidently plays a role in the proper folding of the SPOR domain of FtsN, this domain is non‐essential, suggesting that the disulfide bond might also be dispensable. However, we find that FtsN mutants lacking cysteines give rise to filamentous growth. Furthermore, FtsN protein levels in strains expressing these mutants were significantly lower than in a strain expressing the wild‐type allele, as were FtsN levels in strains incapable of making disulfide bonds (dsb) exposed to anaerobic conditions. These results strongly suggest that FtsN lacking a disulfide bond is unstable, thereby making this disulfide critical for function. We have previously found that dsb strains fail to grow anaerobically, and the results presented here suggest that this growth defect may be due in part to misfolded FtsN. Thus, proper cell division in E. coli is dependent upon disulfide bond formation.  相似文献   

14.
Redox signaling loops in the unfolded protein response   总被引:1,自引:0,他引:1  
Higa A  Chevet E 《Cellular signalling》2012,24(8):1548-1555
The endoplasmic reticulum (ER) is the first compartment of secretory pathway. It plays a major role in ER chaperone-assisted folding and quality control, including post-translational modification such as disulfide bond formation of newly synthesized secretory proteins. Protein folding and assembly takes place in the ER, where redox conditions are distinctively different from the other organelles and are favorable for disulfide formation. These reactions generate the production of reactive oxygen species (ROS) as a byproduct of thiol/disulfide exchange reaction among ER oxidoreductin 1 (Ero1), protein disulfide isomerase (PDI) and ER client proteins, during the formation of disulfide bonds in nascent or incorrectly folded proteins. When uncontrolled, this phenomenon perturbs ER homeostasis, thus aggravating the accumulation of improperly folded or unfolded proteins in this compartment (ER stress). This results in the activation of an adaptive mechanism named the unfolded protein response (UPR). In mammalian cells, the UPR is mediated by three ER-resident membrane proteins (PERK, IRE1 and ATF6) and regulates the expression of the UPR target genes, which themselves encode ER chaperones, folding enzymes, pro-apoptotic proteins and antioxidants, with the objective of restoring ER homeostatic balance. In this review, we will describe redox dependent activation (ER) and amplification (cytosol) loops that control the UPR and the consequences these regulatory loops have on cell fate and physiology.  相似文献   

15.
In the endoplasmic reticulum (ER), disulfide bonds are simultaneously formed in nascent proteins and removed from incorrectly folded or assembled molecules. In this compartment, the redox state must be, therefore, precisely regulated. Here we show that both human Ero1-Lalpha and Ero1-Lbeta (hEROs) facilitate disulfide bond formation in immunoglobulin subunits by selectively oxidizing PDI. Disulfide bond formation is controlled by hEROs, which stand at a crucial point of an electron-flow starting from nascent secretory proteins and passing through PDI. The redox state of ERp57, another ER-resident oxidoreductase, is not affected by over-expression of Ero1-Lalpha, suggesting that parallel and specific pathways control oxidative protein folding in the ER. Mutants in the Ero1-Lalpha CXXCXXC motif act as dominant negatives by limiting immunoglobulin oxidation. PDI-dependent oxidative folding in living cells can thus be manipulated by using hERO variants.  相似文献   

16.
The Canopy (CNPY) family consists of four members predicted to be soluble proteins localized to the endoplasmic reticulum (ER). They are involved in a wide array of processes, including angiogenesis, cell adhesion, and host defense. CNPYs are thought to do so via regulation of secretory transport of a diverse group of proteins, such as immunoglobulin M, growth factor receptors, toll‐like receptors, and the low‐density lipoprotein receptor. Thus far, a comparative analysis of the mammalian CNPY family is missing. Bioinformatic analysis shows that mammalian CNPYs, except the CNPY1 homolog, have N‐terminal signal sequences and C‐terminal ER‐retention signals and that mammals have an additional member CNPY5, also known as plasma cell‐induced ER protein 1/marginal zone B cell‐specific protein 1. Canopy proteins are particularly homologous in four hydrophobic alpha‐helical regions and contain three conserved disulfide bonds. This sequence signature is characteristic for the saposin‐like superfamily and strongly argues that CNPYs share this common saposin fold. We showed that CNPY2, 3, 4, and 5 (termed CNPYs) localize to the ER. In radioactive pulse‐chase experiments, we found that CNPYs rapidly form disulfide bonds and fold within minutes into their native forms. Disulfide bonds in native CNPYs remain sensitive to low concentrations of dithiothreitol (DTT) suggesting that the cysteine residues forming them are relatively accessible to solutes. Possible roles of CNPYs in the folding of secretory proteins in the ER are discussed.  相似文献   

17.
Oxidative protein folding can exceed the cellular secretion machinery, inducing the unfolded protein response (UPR). Sustained endoplasmic reticulum (ER) stress leads to cell stress and disease, as described for Alzheimer, Parkinson, and diabetes mellitus, among others. It is currently assumed that the redox state of the ER is optimally balanced for formation of disulfide bonds using glutathione as the main redox buffer and that UPR causes a reduction of this organelle. The direct effect of oxidative protein folding in the ER, however, has not yet been dissected from UPR regulation. To measure in vivo redox conditions in the ER and cytosol of the yeast model organism Pichia pastoris we targeted redox-sensitive roGFP variants to the respective organelles. Thereby, we clearly demonstrate that induction of the UPR causes reduction of the cytosol in addition to ER reduction. Similarly, a more reduced redox state of the cytosol, but not of the ER, is observed during oxidative protein folding in the ER without UPR induction, as demonstrated by overexpressing genes of disulfide bond-rich secretory proteins such as porcine trypsinogen or protein disulfide isomerase (PDI1) and ER oxidase (ERO1). Cytosolic reduction seems not to be caused by the action of glutathione reductase (GLR1) and could not be compensated for by overexpression of cytosolic glutathione peroxidase (GPX1). Overexpression of GPX1 and PDI1 oxidizes the ER and increases the secretion of correctly folded proteins, demonstrating that oxidative protein folding per se is enhanced by a more oxidized ER and is counterbalanced by a more reduced cytosol. As the total glutathione concentration of these strains does not change significantly, but the ratio of GSH to GSSG is altered, either transport or redox signaling between the glutathione pools of ER and cytosol is assumed. These data clearly demonstrate that protein folding and ER stress have a severe impact on the cytosolic redox balance, which may be a major factor during development of folding-related diseases.  相似文献   

18.
The mutations cld (combined lipase deficiency) and lec23 disrupt in a similar manner the expression of lipoprotein lipase (LPL). Whereas cld affects an unknown gene, lec23 abolishes the activity of alpha-glucosidase I, an enzyme essential for proper folding and assembly of nascent glycoproteins. The hypothesis that cld, like lec23, affects the folding/assembly of nascent LPL was confirmed by showing that in cell lines homozygous for these mutations (Cld and Lec23, respectively), the majority of LPL was inactive, displayed heterogeneous aggregation, and had a decreased affinity for heparin. While inactive LPL was retained in the ER, a small amount of LPL that had attained a native conformation was transported through the Golgi and secreted. Thus, Cld and Lec23 cells recognized and retained the majority of LPL as misfolded, maintaining the standard of quality control. Examination of candidate factors affecting protein maturation, such as glucose addition and trimming, proteins involved in lectin chaperone cycling, and other abundant ER chaperones, revealed that calnexin levels were dramatically reduced in livers from cld/cld mice; this finding was also confirmed in Cld cells.We conclude that cld may affect components in the ER, such as calnexin, that play a role in protein maturation. Whether the reduced calnexin levels per se contribute to the LPL deficiency awaits confirmation.  相似文献   

19.
Lipoprotein lipase (LPL), an enzyme playing the central role in triglyceride metabolism, is a glycoprotein and a homodimer of identical subunits. Dimerization and proper processing of oligosaccharide chains are important maturation steps in post-translational regulation of enzyme activity. Indirect evidences suggest that dimerization of LPL occurs in endoplasmic reticulum (ER) or Golgi. In this study, we investigated the dimerization status of LPL in 3T3-L1 adipocytes, using sucrose density gradient ultracentrifugation and carbonyl cyanide m-chlorophenylhydrazone (CCCP), an inhibitor of ER-Golgi protein transport. In the presence of CCCP, no increase of cellular LPL activity was detected during 2 h of recovery period after the depletion of LPL with heparin and cycloheximide. Only endoglycosidase H (endo H)-sensitive subunits were found in CCCP-treated cells after endo H digestion, suggesting that inactive LPL was retained in ER. In the presence of castanospermine, an inhibitor of ER glucosidase I, LPL subunits of both control and CCCP-treated cells had same molecular weight, indicating that complete oligosaccharides were transferred to LPL subunits in the presence of CCCP. In sucrose density gradient ultracentrifugation, all the LPL protein synthesized in the presence of CCCP was found at the dimeric fractions as in control cells. Most of LPL protein in control cells showed high affinity for heparin, and there was no difference between the control and CCCP-treated cells. These results suggest that dimerization and acquisition of high affinity for heparin of LPL can occur in ER of CCCP-treated cells without acquisition of catalytic activity.  相似文献   

20.
The transfer of oxidizing equivalents from the endoplasmic reticulum (ER) oxidoreductin (Ero1) oxidase to protein disulfide isomerase is an important pathway leading to disulfide formation in nascent proteins within the ER. However, Ero1-deficient mouse cells still support oxidative protein folding, which led to the discovery that peroxiredoxin IV (PRDX4) catalyzes a parallel oxidation pathway. To identify additional pathways, we used RNA interference in human hepatoma cells and evaluated the relative contributions to oxidative protein folding and ER redox homeostasis of Ero1, PRDX4, and the candidate oxidants quiescin-sulfhydryl oxidase 1 (QSOX1) and vitamin K epoxide reductase (VKOR). We show that Ero1 is primarily responsible for maintaining cell growth, protein secretion, and recovery from a reductive challenge. We further show by combined depletion with Ero1 that PRDX4 and, for the first time, VKOR contribute to ER oxidation and that depletion of all three activities results in cell death. Of importance, Ero1, PRDX4, or VKOR was individually capable of supporting cell viability, secretion, and recovery after reductive challenge in the near absence of the other two activities. In contrast, no involvement of QSOX1 in ER oxidative processes could be detected. These findings establish VKOR as a significant contributor to disulfide bond formation within the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号