首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myosin IIIA (MYO3A) targets actin protrusion tips using a motility mechanism dependent on both motor and tail actin-binding activity [1]. We show that myosin IIIB (MYO3B) lacks tail actin-binding activity and is unable to target COS7 cell filopodia tips, yet is somehow able to target stereocilia tips. Strikingly, when MYO3B is coexpressed with espin-1 (ESPN1), a MYO3A cargo protein endogenously expressed in stereocilia [2], MYO3B targets and carries ESPN1 to COS7 filopodia tips. We show that this tip localization is lost when we remove the ESPN1 C terminus actin-binding site. We also demonstrate that, like MYO3A [2], MYO3B can elongate filopodia by transporting ESPN1 to the polymerizing end of actin filaments. The mutual dependence of MYO3B and ESPN1 for tip localization reveals a novel mechanism for the cell to regulate myosin tip localization via a reciprocal relationship with cargo that directly participates in actin binding for motility. Our results are consistent with a novel form of motility for class III myosins that requires both motor and tail domain actin-binding activity and show that the actin-binding tail can be replaced by actin-binding cargo. This study also provides a framework to better understand the late-onset hearing loss phenotype in patients with MYO3A mutations.  相似文献   

2.
A range of cargo adaptor proteins are known to recruit cytoskeletal motors to distinct subcellular compartments. However, the structural impact of cargo recruitment on motor function is poorly understood. Here, we dissect the multimodal regulation of myosin VI activity through the cargo adaptor GAIP-interacting protein, C terminus (GIPC), whose overexpression with this motor in cancer enhances cell migration. Using a range of biophysical techniques, including motility assays, FRET-based conformational sensors, optical trapping, and DNA origami–based cargo scaffolds to probe the individual and ensemble properties of GIPC–myosin VI motility, we report that the GIPC myosin-interacting region (MIR) releases an autoinhibitory interaction within myosin VI. We show that the resulting conformational changes in the myosin lever arm, including the proximal tail domain, increase the flexibility of the adaptor–motor linkage, and that increased flexibility correlates with faster actomyosin association and dissociation rates. Taken together, the GIPC MIR–myosin VI interaction stimulates a twofold to threefold increase in ensemble cargo speed. Furthermore, the GIPC MIR–myosin VI ensembles yield similar cargo run lengths as forced processive myosin VI dimers. We conclude that the emergent behavior from these individual aspects of myosin regulation is the fast, processive, and smooth cargo transport on cellular actin networks. Our study delineates the multimodal regulation of myosin VI by the cargo adaptor GIPC, while highlighting linkage flexibility as a novel biophysical mechanism for modulating cellular cargo motility.  相似文献   

3.
Cytoplasmic dynein is an approximately 1.4 MDa multi‐protein complex that transports many cellular cargoes towards the minus ends of microtubules. Several in vitro studies of mammalian dynein have suggested that individual motors are not robustly processive, raising questions about how dynein‐associated cargoes can move over long distances in cells. Here, we report the production of a fully recombinant human dynein complex from a single baculovirus in insect cells. Individual complexes very rarely show directional movement in vitro. However, addition of dynactin together with the N‐terminal region of the cargo adaptor BICD2 (BICD2N) gives rise to unidirectional dynein movement over remarkably long distances. Single‐molecule fluorescence microscopy provides evidence that BICD2N and dynactin stimulate processivity by regulating individual dynein complexes, rather than by promoting oligomerisation of the motor complex. Negative stain electron microscopy reveals the dynein–dynactin–BICD2N complex to be well ordered, with dynactin positioned approximately along the length of the dynein tail. Collectively, our results provide insight into a novel mechanism for coordinating cargo binding with long‐distance motor movement.  相似文献   

4.
《The Journal of cell biology》1996,133(6):1277-1291
The organization of the actin cytoskeleton plays a critical role in cell physiology in motile and nonmotile organisms. Nonetheless, the function of the actin based motor molecules, members of the myosin superfamily, is not well understood. Deletion of MYO3, a yeast gene encoding a "classic" myosin I, has no detectable phenotype. We used a synthetic lethality screen to uncover genes whose functions might overlap with those of MYO3 and identified a second yeast myosin 1 gene, MYO5. MYO5 shows 86 and 62% identity to MYO3 across the motor and non- motor regions. Both genes contain an amino terminal motor domain, a neck region containing two IQ motifs, and a tail domain consisting of a positively charged region, a proline-rich region containing sequences implicated in ATP-insensitive actin binding, and an SH3 domain. Although myo5 deletion mutants have no detectable phenotype, yeast strains deleted for both MYO3 and MYO5 have severe defects in growth and actin cytoskeletal organization. Double deletion mutants also display phenotypes associated with actin disorganization including accumulation of intracellular membranes and vesicles, cell rounding, random bud site selection, sensitivity to high osmotic strength, and low pH as well as defects in chitin and cell wall deposition, invertase secretion, and fluid phase endocytosis. Indirect immunofluorescence studies using epitope-tagged Myo5p indicate that Myo5p is localized at actin patches. These results indicate that MYO3 and MYO5 encode classical myosin I proteins with overlapping functions and suggest a role for Myo3p and Myo5p in organization of the actin cytoskeleton of Saccharomyces cerevisiae.  相似文献   

5.
Hormone‐ and neuropeptide‐containing secretory granules (SGs) of neuroendocrine PC12 cells are formed at the trans‐ Golgi network as immature SGs. These intermediates are converted to mature SGs in a complex maturation process, including matrix condensation, processing of cargo proteins and removal of proteins and membrane in clathrin‐coated vesicles. The resulting mature SGs undergo Ca2+‐dependent exocytosis upon an appropriate stimulus. We here show that the motor protein myosin Va is implicated in a maturation step of SGs, their binding to F‐actin and their stimulated exocytosis. Interference with myosin Va function blocked the removal of the transmembrane protein furin from maturing SGs without affecting condensation and processing of proteins of the SG lumen. Furthermore, the ATP‐inhibited binding of SGs to F‐actin decreased with progressive maturation and upon interference with myosin Va function. Moreover, the expression of a dominant‐negative myosin Va‐tail or shRNA‐based downregulation of myosin Va interfered with stimulated exocytosis of SGs. In summary, our data suggest an essential function of myosin Va in the membrane remodeling of SGs during maturation and a role in their exocytosis.  相似文献   

6.
Antonina J. Kruppa 《Autophagy》2018,14(9):1644-1645
Mitochondrial homeostasis is maintained by removing dysfunctional, ubiquitinated mitochondria from the network via PRKN-dependent mitophagy. MYO6, a unique myosin that moves towards the minus ends of actin filaments, forms a complex with PRKN and is selectively recruited to damaged mitochondria by binding to ubiquitin. On the mitochondrial surface, this myosin motor initiates the assembly of F-actin cages, which serve as a quality control mechanism to isolate dysfunctional mitochondria thereby preventing their refusion with neighboring populations. MYO6 also plays a role in the later stages of the mitophagy pathway by tethering endosomes to actin filaments facilitating mitophagosome maturation and autophagosome-lysosome fusion.  相似文献   

7.
The trans‐Golgi network (TGN) is a major sorting, packing and delivering station of newly synthesised proteins and lipids to their final destination. These cargo molecules follow the secretory pathway, which is a vital part of cellular trafficking machinery in all eukaryotic cells. This secretory pathway is well conserved in all eukaryotes from low‐level eukaryotes, such as yeast, to higher level eukaryotes like mammals. The molecular mechanisms of protein sorting by adaptor proteins, membrane elongation and transport to the final destinations by motor proteins and the cytoskeleton, and membrane pinching‐off by scission proteins must be choreographically managed for efficient cargo delivery, and the understanding of these detailed processes is not yet completed. Functionally, defects in these mechanisms are associated with the pathology of prominent diseases such as acute myeloid leukaemia, Charcot–Marie–Tooth disease, I‐cell disease and Wiskott–Aldrich syndrome. The present review points out the recent advances in our knowledge of the molecular mechanisms involved in the transportation of the cargo from the TGN towards the endosome.  相似文献   

8.
Neurodegenerative diseases may result in part from defects in motor‐driven vesicle transport in neuronal cells. Myosin‐V, an actin‐based motor that is highly enriched in the brain, mediates the movement of vesicles on cortical actin filaments. Recent evidence suggests that the globular tail of myosin‐V interacts with the microtubule‐based motor, kinesin, to form a ‘hetero‐motor’ complex on vesicles. The complex of these two motors, one microtubule‐based and the other actin‐based, facilitates the movement of vesicles from microtubules to actin filaments. Based on our studies of vesicle transport by these two motors in extracts of squid neurons, we hypothesize that one of the functions of the tail–tail interaction is to provide feedback between the two proteins to allow seamless transition of vesicles from microtubules to actin filaments. To study the interactions of the globular tail domain of myosin‐V to kinesin and to neuronal vesicles, we used a GST‐tagged globular tail fragment in motility assays. The MyoV tail fragment inhibited vesicle transport by 81–91% and thereby exhibited a dominant negative effect. These data show that the recombinant protein blocked the activity of native myosin‐V presumably by binding to vesicles and competing away the native myosin‐V motors. The GST‐MyoV‐tail fragment pulled down kinesin by immunoprecipitation from squid brain homogenates and therefore it exhibited binding properties of native myosin‐V. These data show that the headless myosin‐V fragment is an effective inhibitor of vesicle transport in cell extracts. These studies support the hypothesis that tail–tail interactions may be a mechanism for feedback between myosin‐V and kinesin to allow transition of vesicles from microtubules to actin filaments. Acknowledgements: Supported by NSF grant MCB9974709.  相似文献   

9.
In Drosophila photoreceptors, the NINAC-encoded myosin III is found in a complex with a small, MORN-repeat containing, protein Retinophilin (RTP). Expression of these two proteins in other cell types showed NINAC myosin III behavior is altered by RTP. NINAC deletion constructs were used to map the RTP binding site within the proximal tail domain of NINAC. In vertebrates, the RTP ortholog is MORN4. Co-precipitation experiments demonstrated that human MORN4 binds to human myosin IIIA (MYO3A). In COS7 cells, MORN4 and MYO3A, but not MORN4 and MYO3B, co-localize to actin rich filopodia extensions. Deletion analysis mapped the MORN4 binding to the proximal region of the MYO3A tail domain. MYO3A dependent MORN4 tip localization suggests that MYO3A functions as a motor that transports MORN4 to the filopodia tips and MORN4 may enhance MYO3A tip localization by tethering it to the plasma membrane at the protrusion tips. These results establish conserved features of the RTP/MORN4 family: they bind within the tail domain of myosin IIIs to control their behavior.  相似文献   

10.
The regulation of endosome dynamics is crucial for fundamental cellular functions, such as nutrient intake/digestion, membrane protein cycling, cell migration and intracellular signalling. Here, we show that a novel lipid raft adaptor protein, p18, is involved in controlling endosome dynamics by anchoring the MEK1–ERK pathway to late endosomes. p18 is anchored to lipid rafts of late endosomes through its N‐terminal unique region. p18?/? mice are embryonic lethal and have severe defects in endosome/lysosome organization and membrane protein transport in the visceral endoderm. p18?/? cells exhibit apparent defects in endosome dynamics through perinuclear compartment, such as aberrant distribution and/or processing of lysosomes and impaired cycling of Rab11‐positive recycling endosomes. p18 specifically binds to the p14–MP1 complex, a scaffold for MEK1. Loss of p18 function excludes the p14–MP1 complex from late endosomes, resulting in a downregulation of the MEK–ERK activity. These results indicate that the lipid raft adaptor p18 is essential for anchoring the MEK–ERK pathway to late endosomes, and shed new light on a role of endosomal MEK–ERK pathway in controlling endosome dynamics.  相似文献   

11.
The trans‐Golgi network (TGN) is the main secretory pathway sorting station, where cargoes are packed into appropriate transport vesicles targeted to specific destinations. Exomer is a cargo adaptor necessary for direct transport of a subset of cargoes from the TGN to the plasma membrane in yeast. Here, we show that unlike classical adaptor complexes, exomer is not recruited en bloc to the TGN, but rather assembles through a stepwise pathway, in which first the scaffold protein Chs5 and then the cargo‐binding units, the ChAPs, are recruited. Although all ChAPs are able to assemble functional exomer complexes, they do so with different efficiencies. The mutual relationship between ChAPs varies from cooperation to competition depending on their expression levels and affinities to Chs5 allowing an optimized and efficient cargo transport. The multifactorial assembly pathway results in an exquisitely fine‐tuned adaptor complex, enabling the cell to quickly respond and adapt to changes such as stress.  相似文献   

12.
Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene.  相似文献   

13.
Vesicle biogenesis machinery components such as coat proteins can interact with the actin cytoskeleton for cargo sorting into multiple pathways. It is unknown, however, whether these interactions are a general requirement for the diverse endosome traffic routes. In this study, we identify actin cytoskeleton regulators as previously unrecognized interactors of complexes associated with the Hermansky–Pudlak syndrome. Two complexes mutated in the Hermansky–Pudlak syndrome, adaptor protein complex-3 and biogenesis of lysosome-related organelles complex-1 (BLOC-1), interact with and are regulated by the lipid kinase phosphatidylinositol-4-kinase type IIα (PI4KIIα). We therefore hypothesized that PI4KIIα interacts with novel regulators of these complexes. To test this hypothesis, we immunoaffinity purified PI4KIIα from isotope-labeled cell lysates to quantitatively identify interactors. Strikingly, PI4KIIα isolation preferentially coenriched proteins that regulate the actin cytoskeleton, including guanine exchange factors for Rho family GTPases such as RhoGEF1 and several subunits of the WASH complex. We biochemically confirmed several of these PI4KIIα interactions. Of importance, BLOC-1 complex, WASH complex, RhoGEF1, or PI4KIIα depletions altered the content and/or subcellular distribution of the BLOC-1–sensitive cargoes PI4KIIα, ATP7A, and VAMP7. We conclude that the Hermansky–Pudlak syndrome complex BLOC-1 and its cargo PI4KIIα interact with regulators of the actin cytoskeleton.  相似文献   

14.
After clathrin-mediated endocytosis, clathrin removal yields an uncoated vesicle population primed for fusion with the early endosome. Here we present the first characterization of uncoated vesicles and show that myo6, an unconventional myosin, functions to move these vesicles out of actin-rich regions found in epithelial cells. Time-lapse microscopy revealed that myo6-associated uncoated vesicles were motile and exhibited fusion and stretching events before endosome delivery, processes that were dependent on myo6 motor activity. In the absence of myo6 motor activity, uncoated vesicles remained trapped in the actin mesh, where they exhibited Brownian-like motion. Exit from the actin mesh occurred by a slow diffusion-based mechanism, delaying transferrin trafficking to the early endosome. Expression of a myo6 mutant that bound tightly to F-actin produced immobilized vesicles and blocked trafficking. Depolymerization of the actin cytoskeleton rescued this block and specifically accelerated transferrin delivery to the early endosome without affecting earlier steps in endocytosis. Therefore actin is a physical barrier impeding uncoated vesicle trafficking, and myo6 is recruited to move the vesicles through this barrier for fusion with the early endosome.  相似文献   

15.
The UNC‐45 chaperone protein interacts with and affects the folding, stability, and the ATPase activity of myosins. It plays a critical role in the cardiomyopathy development and in the breast cancer tumor growth. Here we propose the first structural model of the UNC‐45–myosin complex using various in silico methods. Initially, the human UNC‐45B binding epitope was identified and the protein was docked to the cardiac myosin (MYH7) motor domain. The final UNC45B–MYH7 structure was obtained by performing of total 630 ns molecular dynamics simulations. The results indicate a complex formation, which is mainly stabilized by electrostatic interactions. Remarkably, the contact surface area is similar to that of the myosin‐actin complex. A significant interspecies difference in the myosin binding epitope is observed. Our results reveal the structural basis of MYH7 exons 15–16 hypertrophic cardiomyopathy mutations and provide directions for drug targeting. Proteins 2013; 81:1212–1221. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Gerald S. Manning 《Biopolymers》2016,105(12):887-897
The dynamic process underlying muscle contraction is the parallel sliding of thin actin filaments along an immobile thick myosin fiber powered by oar‐like movements of protruding myosin cross bridges (myosin heads). The free energy for functioning of the myosin nanomotor comes from the hydrolysis of ATP bound to the myosin heads. The unit step of translational movement is based on a mechanical‐chemical cycle involving ATP binding to myosin, hydrolysis of the bound ATP with ultimate release of the hydrolysis products, stress‐generating conformational changes in the myosin cross bridge, and relief of built‐up stress in the myosin power stroke. The cycle is regulated by a transition between weak and strong actin–myosin binding affinities. The dissociation of the weakly bound complex by addition of salt indicates the electrostatic basis for the weak affinity, while structural studies demonstrate that electrostatic interactions among negatively charged amino acid residues of actin and positively charged residues of myosin are involved in the strong binding interface. We therefore conjecture that intermediate states of increasing actin–myosin engagement during the weak‐to‐strong binding transition also involve electrostatic interactions. Methods of polymer solution physics have shown that the thin actin filament can be regarded in some of its aspects as a net negatively charged polyelectrolyte. Here we employ polyelectrolyte theory to suggest how actin–myosin electrostatic interactions might be of significance in the intermediate stages of binding, ensuring an engaged power stroke of the myosin motor that transmits force to the actin filament, and preventing the motor from getting stuck in a metastable pre‐power stroke state. We provide electrostatic force estimates that are in the pN range known to operate in the cycle.  相似文献   

17.
Class III myosins are actin-based motors proposed to transport cargo to the distal tips of stereocilia in the inner ear hair cells and/or to participate in stereocilia length regulation, which is especially important during development. Mutations in the MYO3A gene are associated with delayed onset deafness. A previous study demonstrated that L697W, a dominant deafness mutation, disrupts MYO3A ATPase and motor properties but does not impair its ability to localize to the tips of actin protrusions. In the current study, we characterized the transient kinetic mechanism of the L697W motor ATPase cycle. Our kinetic analysis demonstrates that the mutation slows the ADP release and ATP hydrolysis steps, which results in a slight reduction in the duty ratio and slows detachment kinetics. Fluorescence recovery after photobleaching (FRAP) of filopodia tip localized L697W and WT MYO3A in COS-7 cells revealed that the mutant does not alter turnover or average intensity at the actin protrusion tips. We demonstrate that the mutation slows filopodia extension velocity in COS-7 cells which correlates with its twofold slower in vitro actin gliding velocity. Overall, this work allowed us to propose a model for how the motor properties of MYO3A are crucial for facilitating actin protrusion length regulation.  相似文献   

18.
BACKGROUND: WASp/SCAR proteins activate the Arp2/3 complex to nucleate actin filament assembly and are thought to have important roles in endocytosis. WASp is required for efficient endocytosis of antigen receptors, N-WASp promotes actin polymerization-dependent movement of endomembrane vesicles, and Las17 (a yeast WASp homolog) is required for endocytic internalization. However, it is unknown whether movement of endosomes or other organelles requires activation of the Arp2/3 complex by members of the WASp/SCAR family. RESULTS: Fluorescence video microscopy of yeast cells expressing a GFP-tagged G protein-coupled receptor (Ste2-GFP) as an endocytic marker revealed that endosomes and the lysosome-like vacuole are highly motile. Endosome/vacuole motility required actin polymerization, as indicated by sensitivity to latrunculin A, whereas microtubules were uninvolved. Endosome/vacuole motility did not require actin cables or myosin V (a MYO2 gene product), which moves secretory vesicles and the Golgi apparatus and mediates vacuole segregation. However, endosome motility required Las17, a WASp homolog. In contrast to other processes involving Las17, endosome/vacuole motility required the WCA domain of Las17, which is necessary and sufficient to activate the Arp2/3 complex. CONCLUSIONS: Endosome/vacuole motility in vivo requires actin polymerization stimulated by the WASp homolog Las17. WASp/SCAR family members in mammalian cells may have similar functions. Defects in endosome/lysosome motility may contribute to deficits in lymphocyte or macrophage function observed in human patients lacking WASp or developmental defects in N-WASp-deficient mice.  相似文献   

19.
Endosomes in yeast have been hypothesized to move through the cytoplasm by the momentum gained after actin polymerization has driven endosome abscision from the plasma membrane. Alternatively, after abscission, ongoing actin polymerization on endosomes could power transport. Here, we tested these hypotheses by showing that the Arp2/3 complex activation domain (WCA) of Las17 (Wiskott-Aldrich syndrome protein [WASp] homologue) fused to an endocytic cargo protein (Ste2) rescued endosome motility in las17DeltaWCA mutants, and that capping actin filament barbed ends inhibited endosome motility but not endocytic internalization. Motility therefore requires continual actin polymerization on endosomes. We also explored how Las17 is regulated. Endosome motility required the Las17-binding protein Lsb6, a type II phosphatidylinositol 4-kinase. Catalytically inactive Lsb6 interacted with Las17 and promoted endosome motility. Lsb6 therefore is a novel regulator of Las17 that mediates endosome motility independent of phosphatidylinositol 4-phosphate synthesis. Mammalian type II phosphatidylinositol 4-kinases may regulate WASp proteins and endosome motility.  相似文献   

20.
Vertebrate myosin Va is a dimeric processive motor that walks on actin filaments to deliver cargo. In contrast, the two class V myosins in budding yeast, Myo2p and Myo4p, are non-processive (Reck-Peterson, S. L., Tyska, M. J., Novick, P. J., and Mooseker, M. S. (2001) J. Cell Biol. 153, 1121-1126). We previously showed that a chimera with the motor domain of Myo4p on the backbone of vertebrate myosin Va was processive, demonstrating that the Myo4p motor domain has a high duty ratio. Here we examine the properties of a chimera containing the rod and globular tail of Myo4p joined to the motor domain and neck of mouse myosin Va. Surprisingly, the adaptor protein She3p binds to the rod region of Myo4p and forms a homogeneous single-headed myosin-She3p complex, based on sedimentation equilibrium and velocity data. We propose that She3p forms a heterocoiled-coil with Myo4p and is a subunit of the motor. She3p does not affect the maximal actin-activated ATPase in solution or the velocity of movement in an ensemble in vitro motility assay. At the single molecule level, the monomeric myosin-She3p complex showed no processivity. When this construct was dimerized with a leucine zipper, short processive runs were obtained. Robust continuous movement was observed when multiple monomeric myosin-She3p motors were bound to a quantum dot "cargo." We propose that continuous transport of mRNA by Myo4p-She3p in yeast is accomplished either by multiple high duty cycle monomers or by molecules that may be dimerized by She2p, the homodimeric downstream binding partner of She3p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号