首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bipolar spindle formation is essential for the accurate segregation of genetic material during cell division. Although centrosomes influence the number of spindle poles during mitosis, motor and non-motor microtubule-associated proteins (MAPs) also play key roles in determining spindle morphology. TPX2 is a novel MAP also characterized in Xenopus cell-free extracts. To examine hTPX2 (human TPX2) function in human cells, we used siRNA to knock-down its expression and found that cells lacking hTPX2 arrest in mitosis with multipolar spindles. NuMA, gamma-tubulin, and centrin localize to each pole, and nocodazole treatment of cells lacking hTPX2 demonstrates that the localization of gamma-tubulin to multiple spindle poles requires intact microtubules. Furthermore, we show that the formation of monopolar microtubule arrays in human cell extracts does not require hTPX2, demonstrating that the mechanism by which hTPX2 promotes spindle bipolarity is independent of activities focusing microtubule minus ends at spindle poles. Finally, inhibition of the kinesin Eg5 in hTPX2-depleted cells leads to monopolar spindles, indicating that Eg5 function is necessary for multipolar spindle formation in the absence of hTPX2. Our observations reveal a structural role for hTPX2 in spindles and provide evidence for a balance between microtubule-based motor forces and structural spindle components.  相似文献   

2.
The CENP-W/T complex was previously reported to be required for mitosis. HeLa cells depleted of CENP-W displayed profound mitotic defects, with mitotic timing delay, disorganized prometaphases and multipolar spindles as major phenotypic consequences. In this study, we examined the process of multipolar spindle formation induced by CENP-W depletion. Depletion of CENP-W in HeLa cells labeled with histone H2B and tubulin fluorescent proteins induced rapid fragmentation of originally bipolar spindles in a high proportion of cells. CENP-W depletion was associated with depletion of Hec1 at kinetochores. The possibility of promiscuous centrosomal duplication was ruled out by immunofluorescent examination of centrioles. However, centrioles were frequently observed to be abnormally split. In addition, a large proportion of the supernumerary poles lacked centrioles, but were positively stained with different centrosomal markers. These observations suggested that perturbation in spindle force distribution caused by defective kinetochores could contribute to a mechanical mechanism for spindle pole disruption. ‘Spindle free’ nocodazole arrested cells did not exhibit pole fragmentation after CENP-W depletion, showing that pole fragmentation is microtubule dependent. Inhibition of centrosome separation by monastrol reduced the incidence of spindle pole fragmentation, indicating that Eg5 plays a role in spindle pole disruption. Surprisingly, CENP-W depletion rescued the monopolar spindle phenotype of monastrol treatment, with an increased frequency of bipolar spindles observed after CENP-W RNAi. We overexpressed the microtubule cross-linking protein TPX2 to create spindle poles stabilized by the microtubule cross-linking activity of TPX2. Spindle pole fragmentation was suppressed in a TPX2-dependent fashion. We propose that CENP-W, by influencing proper kinetochore assembly, particularly microtubule docking sites, can confer spindle pole resistance to traction forces exerted by motor proteins during chromosome congression. Taken together, our findings are consistent with a model in which centrosome integrity is controlled by the pathways regulating kinetochore-microtubule attachment stability.  相似文献   

3.
A steady-state metaphase spindle maintains constant length, although the microtubules undergo intensive dynamics. Tubulin dimers are incorporated at plus ends of spindle microtubules while they are removed from the minus ends, resulting in poleward movement. Such microtubule flux is regulated by the microtubule rescue factors CLASPs at kinetochores and depolymerizing protein Kif2a at the poles, along with other regulators of microtubule dynamics. How microtubule polymerization and depolymerization are coordinated remains unclear. Here we show that TPX2, a microtubule-bundling protein and activator of Aurora A, plays an important role. TPX2 was phosphorylated by Aurora A during mitosis. Its phospho-null mutant caused short metaphase spindles coupled with low microtubule flux rate. Interestingly, phosphorylation of TPX2 regulated its interaction with CLASP1 but not Kif2a. The effect of its mutant in shortening the spindle could be rescued by codepletion of CLASP1 and Kif2a that abolished microtubule flux. Together we propose that Aurora A–dependent TPX2 phosphorylation controls mitotic spindle length through regulating microtubule flux.  相似文献   

4.
The human ortholog of the targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a cytoskeletal protein that plays a major role in spindle assembly and is required for mitosis. During spindle morphogenesis, TPX2 cooperates with Aurora A kinase and Eg5 kinesin to regulate microtubule organization. TPX2 displays over 40 putative phosphorylation sites identified from various high-throughput proteomic screenings. In this study, we characterize the phosphorylation of threonine 72 (Thr72) in human TPX2, a residue highly conserved across species. We find that Cdk1/2 phosphorylate TPX2 in vitro and in vivo. Using homemade antibodies specific for TPX2 phosphorylated at Thr72, we show that this phosphorylation is cell cycle-dependent and peaks at M phase. Endogenous TPX2 phosphorylated at Thr72 does not associate with the mitotic spindle. Furthermore, ectopic GFP-TPX2 T72A preferentially concentrates on the spindle, whereas GFP-TPX2 WT distributes to both spindle and cytosol. The T72A mutant also increases the proportion of cells with multipolar spindles phenotype. This effect is associated with increased Aurora A activity and abnormally elongated spindles, indicative of higher Eg5 activity. In summary, we propose that phosphorylation of Thr72 regulates TPX2 localization and impacts spindle assembly via Aurora A and Eg5.  相似文献   

5.
Fish lineage-specific gene, sinup [Siaz-interacting nuclear protein], modulates neural plate formation in embryogenesis and shares homology with human TPX2 protein, a member of the vertebrate mitogen-activating protein family. In spite of the presence of the TPX2 domain in Sinup, its cellular function has been unknown. As an initial approach to this question, we expressed Sinup by injecting sinup-EGFP mRNAs into zebrafish embryos at the one- to two-cell stage. First of all, Sinup-EGFP was associated with centrosomes and mitotic spindles. In particular, Sinup was localized to the spindle poles and midbody microtubules during the period between anaphase and cytokinesis. Second, various deleted mutants of Sinup-EGFP failed to be associated with the centrosomes and mitotic spindles. Third, a Sinup mutant, where the 144th Serine residue was converted to alanine, not only disturbed the mitotic spindle organization, such as multipolar spindles, fragmented spindle poles, and flattened spindles, but also arrested the cell cycle at metaphase and cell movement. Finally, Sinup is phosphorylated by Aurora A and the 144th Serine mutant of Sinup is partially phosphorylated by Aurora A kinase. We thus propose that Sinup is an essential element for the integrity of centrosomes and mitotic spindle fibers as well as for the normal process of cell cycle and cellular movement in vertebrate embryos.  相似文献   

6.
Spindle pole regulation by a discrete Eg5-interacting domain in TPX2   总被引:1,自引:0,他引:1  
Targeting protein for Xklp2 (TPX2) activates the Ser/Thr kinase Aurora A in mitosis and targets it to the mitotic spindle [1, 2]. These effects on Aurora A are mediated by the N-terminal domain of TPX2, whereas a C-terminal fragment has been reported to affect microtubule nucleation [3]. Using the Xenopus system, we identified a novel role of TPX2 during mitosis. Injection of TPX2 or its C terminus (TPX2-CT) into blastomeres of two-cell embryos led to potent cleavage arrest. Despite cleavage arrest, TPX2-injected embryos biochemically undergo multiple rounds of DNA synthesis and mitosis, and arrested blastomeres have abnormal spindles, clustered centrosomes, and an apparent failure of cytokinesis. In Xenopus S3 cells, transfection of TPX2-FL causes spindle collapse, whereas TPX2-CT blocks pole segregation, resulting in apposing spindle poles with no evident displacement of Aurora A. Analysis of TPX2-CT deletion peptides revealed that only constructs able to interact with the class 5 kinesin-like motor protein Eg5 induce the spindle phenotypes. Importantly, injection of Eg5 into TPX2-CT-arrested blastomeres causes resumption of cleavage. These results define a discrete domain within the C terminus of TPX2 that exerts a novel Eg5-dependent function in spindle pole segregation.  相似文献   

7.
To assemble mitotic spindles, cells nucleate microtubules from a variety of sources including chromosomes and centrosomes. We know little about how the regulation of microtubule nucleation contributes to spindle bipolarity and spindle size. The Aurora A kinase activator TPX2 is required for microtubule nucleation from chromosomes as well as for spindle bipolarity. We use bacterial artificial chromosome-based recombineering to introduce point mutants that block the interaction between TPX2 and Aurora A into human cells. TPX2 mutants have very short spindles but, surprisingly, are still bipolar and segregate chromosomes. Examination of microtubule nucleation during spindle assembly shows that microtubules fail to nucleate from chromosomes. Thus, chromosome nucleation is not essential for bipolarity during human cell mitosis when centrosomes are present. Rather, chromosome nucleation is involved in spindle pole separation and setting spindle length. A second Aurora A-independent function of TPX2 is required to bipolarize spindles.  相似文献   

8.
Mitotic spindles are microtubule-based structures, but increasing evidence indicates that filamentous actin (F-actin) and F-actin–based motors are components of these structures. ADD1 (adducin-1) is an actin-binding protein that has been shown to play important roles in the stabilization of the membrane cortical cytoskeleton and cell–cell adhesions. In this study, we show that ADD1 associates with mitotic spindles and is crucial for proper spindle assembly and mitotic progression. Phosphorylation of ADD1 at Ser12 and Ser355 by cyclin-dependent kinase 1 enables ADD1 to bind to myosin-X (Myo10) and therefore to associate with mitotic spindles. ADD1 depletion resulted in distorted, elongated, and multipolar spindles, accompanied by aberrant chromosomal alignment. Remarkably, the mitotic defects caused by ADD1 depletion were rescued by reexpression of ADD1 but not of an ADD1 mutant defective in Myo10 binding. Together, our findings unveil a novel function for ADD1 in mitotic spindle assembly through its interaction with Myo10.  相似文献   

9.
TPX2, A novel xenopus MAP involved in spindle pole organization   总被引:14,自引:0,他引:14  
TPX2, the targeting protein for Xenopus kinesin-like protein 2 (Xklp2), was identified as a microtubule-associated protein that mediates the binding of the COOH-terminal domain of Xklp2 to microtubules (Wittmann, T., H. Boleti, C. Antony, E. Karsenti, and I. Vernos. 1998. J. Cell Biol. 143:673-685). Here, we report the cloning and functional characterization of Xenopus TPX2. TPX2 is a novel, basic 82.4-kD protein that is phosphorylated during mitosis in a microtubule-dependent way. TPX2 is nuclear during interphase and becomes localized to spindle poles in mitosis. Spindle pole localization of TPX2 requires the activity of the dynein-dynactin complex. In late anaphase TPX2 becomes relocalized from the spindle poles to the midbody. TPX2 is highly homologous to a human protein of unknown function and thus defines a new family of vertebrate spindle pole components. We investigated the function of TPX2 using spindle assembly in Xenopus egg extracts. Immunodepletion of TPX2 from mitotic egg extracts resulted in bipolar structures with disintegrating poles and a decreased microtubule density. Addition of an excess of TPX2 to spindle assembly reactions gave rise to monopolar structures with abnormally enlarged poles. We conclude that, in addition to its function in targeting Xklp2 to microtubule minus ends during mitosis, TPX2 also participates in the organization of spindle poles.  相似文献   

10.
Assembly of the mitotic spindle is essential for proper chromosome segregation during mitosis. Maintenance of spindle poles requires precise regulation of kinesin- and dynein-generated forces, and improper regulation of these forces disrupts pole integrity leading to pole fragmentation. The formation and function of the mitotic spindle are regulated by many proteins, including Aurora A kinase and the motor proteins Kif2a and Eg5. Here, we characterize a surprising role for the RhoA GTPase-activating protein, p190RhoGAP, in regulating the mitotic spindle. We show that cells depleted of p190RhoGAP arrest for long periods in mitosis during which cells go through multiple transitions between having bipolar and multipolar spindles. Most of the p190RhoGAP-depleted cells finally achieve a stable bipolar attachment and proceed through anaphase. The multipolar spindle phenotype can be rescued by low doses of an Eg5 inhibitor. Moreover, we show that p190RhoGAP-depleted multipolar cells localize Aurora A to all the poles, but the kinase is only activated at the two centriolar poles. Overall, our data identify an unappreciated connection between p190RhoGAP and the proteins that control spindle poles including Aurora A kinase and Eg5 that is required to prevent or correct spindle pole fragmentation.  相似文献   

11.
CDC25 dual-specificity phosphatases play a central role in cell cycle control through the activation of Cyclin-Dependent Kinases (CDKs). Expression during mitosis of a stabilized CDC25B mutant (CDC25B-DDA), which cannot interact with the F-box protein βTrCP for proteasome-dependent degradation, causes mitotic defects and chromosome segregation errors in mammalian cells. We found, using the same CDC25B mutant, that stabilization and failure to degrade CDC25B during mitosis lead to the appearance of multipolar spindle cells resulting from a fragmentation of pericentriolar material (PCM) and abolish mitotic Plk1-dependent phosphorylation of Kizuna (Kiz), which is essential for the function of Kiz in maintaining spindle pole integrity. Thus, in mitosis Kiz is a new substrate of CDC25B whose dephosphorylation following CDC25B stabilization leads to the formation of multipolar spindles. Furthermore, endogenous Kiz and CDC25B interact only in mitosis, suggesting that Kiz phosphorylation depends on a balance between CDC25B and Plk1 activities. Our data identify a novel mitotic substrate of CDC25B phosphatase that plays a key role in mitosis control.  相似文献   

12.
Formation of female gametes requires acentriolar spindle assembly during meiosis. Mitotic spindles organize from centrosomes and via local activation of the RanGTPase on chromosomes. Vertebrate oocytes present a RanGTP gradient centred on chromatin at all stages of meiotic maturation. However, this gradient is dispensable for assembly of the first meiotic spindle. To understand this meiosis I peculiarity, we studied TPX2, a Ran target, in mouse oocytes. Strikingly, TPX2 activity is controlled at the protein level through its accumulation from meiosis I to II. By RNAi depletion and live imaging, we show that TPX2 is required for spindle assembly via two distinct functions. It controls microtubule assembly and spindle pole integrity via the phosphorylation of TACC3, a regulator of MTOCs activity. We show that meiotic spindle formation in vivo depends on the regulation of at least a target of Ran, TPX2, rather than on the regulation of the RanGTP gradient itself.  相似文献   

13.
A griseofulvin-resistant Chinese hamster ovary (CHO) mutant (Grs-2) which has an altered beta-tubulin subunit as well as wild-type beta-tubulin is temperature-sensitive (ts) for growth at 40.5 degrees C. This growth defect appears to result from the formation of abnormal mitotic spindles at the non-permissive temperature (Abraham, I et al., J cell biol 97 (1983) 1055) [19]. Light microscopy of spindles isolated from mutant cells cultured at the permissive temperature showed a typical bipolar morphology, whereas spindles isolated at the non-permissive temperature were multipolar. In order to study the role of tubulin in spindle formation, we analyzed the tubulin composition of the multipolar spindles. Two-dimensional gels and immunoblotting analysis of one-dimensional electrophoretic gels stained with monoclonal anti-Chinese hamster brain beta-tubulin antibody revealed that both mutant and wild-type beta-tubulins were present in similar proportions in both bipolar spindles at 37 degrees C and multipolar spindles at 40.5 degrees C. The ratio between wild-type and mutant tubulin in spindles was also found to be the same as in the cytoplasmic microtubule network in interphase cells, providing evidence that the mutant beta-tubulin appeared to be incorporated in a similar manner into both interphase and mitotic microtubule structures. In vitro microtubule polymerization onto centrosomes prepared from mutant Grs-2 demonstrated that 80% of the sites for microtubule nucleation were without centrioles, suggesting fragmentation of pericentriolar material away from centrioles. This may be one of the causes of multipolar spindle formation in the mutant cells. These results, therefore, suggest that abnormal formation of spindles in mutant cells is due not to the presence of the mutant tubulin per se, but to the abnormal behavior of this mutant tubulin in the cellular environment during mitosis or abnormal interaction with other components in the spindle at 40.5 degrees C.  相似文献   

14.
Astrin has been described as a microtubule and kinetochore protein required for the maintenance of sister chromatid cohesion and centrosome integrity in human mitosis. However, its role in mammalian oocyte meiosis is unclear. In this study, we find that Astrin is mainly associated with the meiotic spindle microtubules and concentrated on spindle poles at metaphase I and metaphase II stages. Taxol treatment and immunoprecipitation show that Astrin may interact with the centrosomal proteins Aurora-A or Plk1 to regulate microtubule organization and spindle pole integrity. Loss-of-function of Astrin by RNAi and overexpression of Tof the coiled-coil domain results in spindle disorganization, chromosome misalignment and meiosis progression arrestT. Thr24, Ser66 or Ser447 may be the potential phosphorylated sites of Astrin by Plk1, as site-directed mutation of these sites causes oocyte meiotic arrest at HTmetaphaseTH I with highly disordered spindles and disorganized chromosomes, although mutant Astrin localizes to the spindle apparatus. Taken together, these data strongly suggest that Astrin is critical for meiotic spindle assembly and maturation in mouse oocytes.  相似文献   

15.
The function of the essential MIF2 gene in the Saccharomyces cerevisiae cell cycle was examined by overepressing or creating a deficit of MIF2 gene product. When MIF2 was overexpressed, chromosomes missegregated during mitosis and cells accumulated in the G2 and M phases of the cell cycle. Temperature sensitive mutants isolated by in vitro mutagenesis delayed cell cycle progression when grown at the restrictive temperature, accumulated as large budded cells that had completed DNA replication but not chromosome segregation, and lost viability as they passed through mitosis. Mutant cells also showed increased levels of mitotic chromosome loss, supersensitivity to the microtubule destabilizing drug MBC, and morphologically aberrant spindles. mif2 mutant spindles arrested development immediately before anaphase spindle elongation, and then frequently broke apart into two disconnected short half spindles with misoriented spindle pole bodies. These findings indicate that MIF2 is required for structural integrity of the spindle during anaphase spindle elongation. The deduced Mif2 protein sequence shared no extensive homologies with previously identified proteins but did contain a short region of homology to a motif involved in binding AT rich DNA by the Drosophila D1 and mammalian HMGI chromosomal proteins.  相似文献   

16.
During interphase, the centrosome concentrates cell stress response molecules, including chaperones and proteasomes, into a proteolytic center. However, whether the centrosome functions as proteolytic center during mitosis is not known. In this study, cultured mammalian cells were treated with the proteasome inhibitor MG 132 and spindle morphology in mitotic cells was characterized in order to address this issue. Proteasome inhibition during mitosis leads to the formation of additional asters that cause the assembly of multipolar spindles. The cause of this phenomenon was investigated by inhibiting microtubule-based transport and protein synthesis. These experimental conditions prevented the formation of supernumerary asters during mitosis. In addition, the expression of dsRed without proteasome inhibition led to the fragmentation of spindle poles. These experiments showed that the formation of extra asters depends on intact microtubule-based transport and protein synthesis. These results suggest that formation of supernumerary asters is due to excessive accumulation of proteins at the spindle poles and consequently fragmentation of the centrosome. Together, this leads to the conclusion that the centrosome functions as proteolytic center during mitosis and proteolytic activity at the spindle poles is necessary for maintaining spindle pole integrity.  相似文献   

17.
At the onset of mitosis, microtubules form a bipolar spindle around the prophase nucleus. TPX2 is phosphorylated during mitosis and acts as a spindle assembly factor that nucleates microtubules in the close vicinity of chromosomes, independent of the centrosomes. Furthermore, it activates the kinase Aurora A and targets the Xenopus kinesin-like protein 2 to spindle poles. We have characterized the plant orthologue of TPX2 that possesses all identified functional domains of its animal counterpart. Moreover, we have demonstrated that it is exported before nuclear envelope breakdown and that its activity around the nuclear envelope is essential for prospindle assembly. Here, we compare the sequences of several characterized TPX2 domains, allowing us to define TPX2. We propose that true TPX2 orthologues share simultaneously all these conserved domains and that other proteins possessing only some of these functional blocks may be considered as TPX2-related proteins.Key words: mitosis, microtubules, spindle assembly, TPX2 signature, targeting domains, Prosite motifs, evolution  相似文献   

18.
The microtubule-based mitotic spindle is responsible for equally partitioning the genome during each cell division, and its assembly is executed via several microtubule nucleation pathways. Targeting Protein for XKlp2 (TPX2) stimulates the branching microtubule nucleation pathway, where new microtubules are nucleated from preexisting ones within mitotic or meiotic spindles. TPX2, like other spindle assembly factors, is sequestered by binding to nuclear importins-α/β until the onset of mitosis, yet the molecular nature of this regulation remains unclear. Here we demonstrate that TPX2 interacts with importins-α/β with nanomolar affinity in a 1:1:1 monodispersed trimer. We also identify a new nuclear localization sequence in TPX2 that contributes to its high-affinity interaction with importin-α. In addition, we establish that TPX2 interacts with importin-β via dispersed, weak interactions. We show that interactions of both importin-α and -β with TPX2 inhibit its ability to undergo phase separation, which was recently shown to enhance the kinetics of branching microtubule nucleation. In summary, our study informs how importins regulate TPX2 to facilitate spindle assembly, and provides novel insight into the functional regulation of protein phase separation.  相似文献   

19.
The spindle is a fusiform bipolar-microtubule array that is responsible for chromosome segregation during mitosis. Focused poles are an essential feature of spindles in vertebrate somatic cells, and pole focusing has been shown to occur through a centrosome-independent self-organization mechanism where microtubule motors cross-link and focus microtubule minus ends. Most of our understanding of this mechanism for pole focusing derives from studies performed in cell-free extracts devoid of centrosomes and kinetochores. Here, we examine how sustained force from kinetochores influences the mechanism of pole focusing in cultured cells. We show that the motor-driven self-organization activities associated with NuMA (i.e., cytoplasmic dynein) and HSET are not necessary for pole focusing if sustained force from kinetochores is inhibited in Nuf2- or Mis12-deficient cells. Instead, pole organization relies on TPX2 as it cross-links spindle microtubules to centrosome-associated mitotic asters. Thus, both motor-driven and static-cross-linking mechanisms contribute to spindle-pole organization, and kinetochore activity influences the mechanism of spindle-pole organization. The motor-driven self-organization of microtubule minus ends at spindle poles is needed to organize spindle poles in vertebrate somatic cells when kinetochores actively exert force on spindle microtubules.  相似文献   

20.
Bipolar spindle formation is essential for faithful chromosome segregation at mitosis. Because centrosomes define spindle poles, abnormal number and structural organization of centrosomes can lead to loss of spindle bipolarity and genetic integrity. ASAP (aster-associated protein or MAP9) is a centrosome- and spindle-associated protein, the deregulation of which induces severe mitotic defects. Its phosphorylation by Aurora A is required for spindle assembly and mitosis progression. Here, we show that ASAP is localized to the spindle poles by Polo-like kinase 1 (Plk1) (a mitotic kinase that plays an essential role in centrosome regulation and mitotic spindle assembly) through the γ-TuRC-dependent pathway. We also demonstrate that ASAP is a novel substrate of Plk1 phosphorylation and have identified serine 289 as the major phosphorylation site by Plk1 in vivo. ASAP phosphorylated on serine 289 is localized to centrosomes during mitosis, but this phosphorylation is not required for its Plk1-dependent localization at the spindle poles. We show that phosphorylated ASAP on serine 289 contributes to spindle pole stability in a microtubule-dependent manner. These data reveal a novel function of ASAP in centrosome integrity. Our results highlight dual ASAP regulation by Plk1 and further confirm the importance of ASAP for spindle pole organization, bipolar spindle assembly, and mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号