首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The yeast checkpoint factors Mrc1p and Tof1p travel with the replication fork and mediate the activation of the Rad53p kinase in response to a replication stress. We show here that both proteins are required for normal fork progression but play different roles at stalled forks. Tof1p is critical for the activity of the rDNA replication fork barrier (RFB) but plays a minor role in the replication checkpoint. In contrast, Mrc1p is not necessary for RFB activity but is essential to mediate the replication stress response. Interestingly, stalled forks did not collapse in mrc1Delta cells exposed to hydroxyurea (HU) as they do in rad53 mutants. However, forks failed to restart when mrc1Delta cells were released from the block. The critical role of Mrc1p in HU is therefore to promote fork recovery in a Rad53p-independent manner, presumably through the formation of a stable fork-pausing complex.  相似文献   

2.
The replication checkpoint coordinates the cell cycle with DNA replication and recombination, preventing genome instability and cancer. The budding yeast Rad53 checkpoint kinase stabilizes stalled forks and replisome-fork complexes, thus preventing the accumulation of ss-DNA regions and reversed forks at collapsed forks. We searched for factors involved in the processing of stalled forks in HU-treated rad53 cells. Using the neutral-neutral two-dimensional electrophoresis technique (2D gel) and psoralen crosslinking combined with electron microscopy (EM), we found that the Exo1 exonuclease is recruited to stalled forks and, in rad53 mutants, counteracts reversed fork accumulation by generating ss-DNA intermediates. Hence, Exo1-mediated fork processing resembles the action of E. coli RecJ nuclease at damaged forks. Fork stability and replication restart are influenced by both DNA polymerase-fork association and Exo1-mediated processing. We suggest that Exo1 counteracts fork reversal by resecting newly synthesized chains and resolving the sister chromatid junctions that cause regression of collapsed forks.  相似文献   

3.
The replication checkpoint is a dedicated sensor-response system activated by impeded replication forks. It stabilizes stalled forks and arrests division, thereby preserving genome integrity and promoting cell survival. In budding yeast, Tof1 is thought to act as a specific mediator of the replication checkpoint signal that activates the effector kinase Rad53. Here we report studies of fission yeast Swi1, a Tof1-related protein required for a programmed fork-pausing event necessary for mating type switching. Our studies have shown that Swi1 is vital for proficient activation of the Rad53-like checkpoint kinase Cds1. Together they are required to prevent fork collapse in the ribosomal DNA repeats, and they also prevent irreversible fork arrest at a newly identified hydroxyurea pause site. Swi1 also has Cds1-independent functions. Rad22 DNA repair foci form during S phase in swi1 mutants and to a lesser extent in cds1 mutants, indicative of fork collapse. Mus81, a DNA endonuclease required for recovery from collapsed forks, is vital in swi1 but not cds1 mutants. Swi1 is recruited to chromatin during S phase. We propose that Swi1 stabilizes replication forks in a configuration that is recognized by replication checkpoint sensors.  相似文献   

4.
The Rad52 pathway has a central function in the recombinational repair of chromosome breaks and in the recovery from replication stress. Tolerance to replication stress also depends on the Mec1 kinase, which activates the DNA replication checkpoint in an Mrc1‐dependent manner in response to fork arrest. Although the Mec1 and Rad52 pathways are initiated by the same single‐strand DNA (ssDNA) intermediate, their interplay at stalled forks remains largely unexplored. Here, we show that the replication checkpoint suppresses the formation of Rad52 foci in an Mrc1‐dependent manner and prevents homologous recombination (HR) at chromosome breaks induced by the HO endonuclease. This repression operates at least in part by impeding resection of DNA ends, which is essential to generate 3′ ssDNA tails, the primary substrate of HR. Interestingly, we also observed that the Mec1 pathway does not prevent recombination at stalled forks, presumably because they already contain ssDNA. Taken together, these data indicate that the DNA replication checkpoint suppresses genomic instability in S phase by blocking recombination at chromosome breaks and permitting helpful recombination at stalled forks.  相似文献   

5.
Recruitment of the homologous recombination machinery to sites of double‐strand breaks is a cell cycle‐regulated event requiring entry into S phase and CDK1 activity. Here, we demonstrate that the central recombination protein, Rad52, forms foci independent of DNA replication, and its recruitment requires B‐type cyclin/CDK1 activity. Induction of the intra‐S‐phase checkpoint by hydroxyurea (HU) inhibits Rad52 focus formation in response to ionizing radiation. This inhibition is dependent upon Mec1/Tel1 kinase activity, as HU‐treated cells form Rad52 foci in the presence of the PI3 kinase inhibitor caffeine. These Rad52 foci colocalize with foci formed by the replication clamp PCNA. These results indicate that Mec1 activity inhibits the recruitment of Rad52 to both sites of DNA damage and stalled replication forks during the intra‐S‐phase checkpoint. We propose that B‐type cyclins promote the recruitment of Rad52 to sites of DNA damage, whereas Mec1 inhibits spurious recombination at stalled replication forks.  相似文献   

6.
The RecQ helicase Sgs1p forms a complex with the type 1 DNA topoisomerase Top3p that resolves double Holliday junctions resulting from Rad51-mediated exchange. We find, however, that Sgs1p functions independently of both Top3p and Rad51p to stimulate the checkpoint kinase Rad53p when replication forks stall due to dNTP depletion on hydroxyurea. Checkpoint activation does not require Sgs1p function as a helicase, and correlates with its ability to bind the Rad53p kinase FHA1 motif directly. On the other hand, Sgs1p's helicase activity is required together with Top3p and the strand-exchange factor Rad51p, to help stabilise DNA polymerase epsilon at stalled replication forks. In this function, the Sgs1p/Top3p complex acts in parallel to the Claspin-related adaptor, Mrc1p, although the sgs1 and mrc1 mutations are epistatic for Rad53p activation. We thus identify two distinct pathways through which Sgs1p contributes to genomic integrity: checkpoint kinase activation requires Sgs1p as a noncatalytic Rad53p-binding site, while the combined Top3p/Sgs1p resolvase activity contributes to replisome stability and recovery from arrested replication forks.  相似文献   

7.
DNA replication checkpoint is activated in response to replication stresses. It maintains the integrity of stalled replication forks and prevents premature segregation of largely unreplicated chromosomes. In budding yeast, Mec1 and Rad53 kinases (homologous to mammalian ATM/ATR and Chk2 kinases, respectively) are the main effectors of this checkpoint control. Using a yeast based screen, we have identified acompound (named here ENA) which inhibits DNA replication and activatesMec1/Rad53 checkpoint. A brief exposure to this compound stops fork progression at or near replication origin and renders the forks incompetent to resume replication despite the presence of a functional checkpoint. ENA also inhibits DNA synthesis in mammalian cells leading to the activation of ATM/ATR pathway and the induction of apoptosis in a p53 independent manner. Interestingly, ENA acts as an effective antiproliferative agent against a subset of cancer cell lines and as an anti-tumor agent against human xenografts in mice. Thus, ENA is a potent cell cycle inhibitor with conceivable therapeutic potential.  相似文献   

8.
Formation of primed single‐stranded DNA at stalled replication forks triggers activation of the replication checkpoint signalling cascade resulting in the ATR‐mediated phosphorylation of the Chk1 protein kinase, thus preventing genomic instability. By using siRNA‐mediated depletion in human cells and immunodepletion and reconstitution experiments in Xenopus egg extracts, we report that the Y‐family translesion (TLS) DNA polymerase kappa (Pol κ) contributes to the replication checkpoint response and is required for recovery after replication stress. We found that Pol κ is implicated in the synthesis of short DNA intermediates at stalled forks, facilitating the recruitment of the 9‐1‐1 checkpoint clamp. Furthermore, we show that Pol κ interacts with the Rad9 subunit of the 9‐1‐1 complex. Finally, we show that this novel checkpoint function of Pol κ is required for the maintenance of genomic stability and cell proliferation in unstressed human cells.  相似文献   

9.
Tel1/ATM and Mec1/ATR checkpoint kinases are activated by DNA double‐strand breaks (DSBs). Mec1/ATR recruitment to DSBs requires the formation of RPA‐coated single‐stranded DNA (ssDNA), which arises from 5′–3′ nucleolytic degradation (resection) of DNA ends. Here, we show that Saccharomyces cerevisiae Mec1 regulates resection of the DSB ends. The lack of Mec1 accelerates resection and reduces the loading to DSBs of the checkpoint protein Rad9, which is known to inhibit ssDNA generation. Extensive resection is instead inhibited by the Mec1‐ad mutant variant that increases the recruitment near the DSB of Rad9, which in turn blocks DSB resection by both Rad53‐dependent and Rad53‐independent mechanisms. The mec1‐ad resection defect leads to prolonged persistence at DSBs of the MRX complex that causes unscheduled Tel1 activation, which in turn impairs checkpoint switch off. Thus, Mec1 regulates the generation of ssDNA at DSBs, and this control is important to coordinate Mec1 and Tel1 signaling activities at these breaks.  相似文献   

10.
To ensure proper replication and segregation of the genome, eukaryotic cells have evolved surveillance systems that monitor and react to impaired replication fork progression. In budding yeast, the intra-S phase checkpoint responds to stalled replication forks by downregulating late-firing origins, preventing spindle elongation and allowing efficient resumption of DNA synthesis after recovery from stress. Mutations in this pathway lead to high levels of genomic instability, particularly in the presence of DNA damage. Here we demonstrate by chromatin immunoprecipitation that when yeast replication forks stall due to hydroxyurea (HU) treatment, DNA polymerases alpha and epsilon are stabilized for 40-60 min. This requires the activities of Sgs1, a member of the RecQ family of DNA helicases, and the ATM-related kinase Mec1, but not Rad53 activation. A model is proposed whereby Sgs1 helicase resolves aberrantly paired structures at stalled forks to maintain single-stranded DNA that allows RP-A and Mec1 to promote DNA polymerase association.  相似文献   

11.
Polymerase‐blocking DNA lesions are thought to elicit a checkpoint response via accumulation of single‐stranded DNA at stalled replication forks. However, as an alternative to persistent fork stalling, re‐priming downstream of lesions can give rise to daughter‐strand gaps behind replication forks. We show here that the processing of such structures by an exonuclease, Exo1, is required for timely checkpoint activation, which in turn prevents further gap erosion in S phase. This Rad9‐dependent mechanism of damage signaling is distinct from the Mrc1‐dependent, fork‐associated response to replication stress induced by conditions such as nucleotide depletion or replisome‐inherent problems, but reminiscent of replication‐independent checkpoint activation by single‐stranded DNA. Our results indicate that while replisome stalling triggers a checkpoint response directly at the stalled replication fork, the response to replication stress elicited by polymerase‐blocking lesions mainly emanates from Exo1‐processed, postreplicative daughter‐strand gaps, thus offering a mechanistic explanation for the dichotomy between replisome‐ versus template‐induced checkpoint signaling.  相似文献   

12.
Genome integrity is protected by Cds1 (Chk2), a checkpoint kinase that stabilizes arrested replication forks. How Cds1 accomplishes this task is unknown. We report that Cds1 interacts with Rad60, a protein required for recombinational repair in fission yeast. Cds1 activation triggers Rad60 phosphorylation and nuclear delocalization. A Rad60 mutant that inhibits regulation by Cds1 renders cells specifically sensitive to replication fork arrest. Genetic and biochemical studies indicate that Rad60 functions codependently with Smc5 and Smc6, subunits of an SMC (structural maintenance of chromosomes) complex required for recombinational repair. These studies indicate that regulation of Rad60 is an important part of the replication checkpoint response controlled by Cds1. We propose that control of Rad60 regulates recombination events at stalled forks.  相似文献   

13.
The Saccharomyces cerevisiae protein kinase Rad53 plays a key role in maintaining genomic integrity after DNA damage and is an essential component of the ‘intra-S-phase checkpoint’. In budding yeast, alkylating chemicals, such as methyl methanesulfonate (MMS), or depletion of nucleotides by hydroxyurea (HU) stall DNA replication forks and thus activate Rad53 during S-phase. This stabilizes stalled DNA replication forks and prevents the activation of later origins of DNA replication. Here, we report that a reduction in the level of Rad53 kinase causes cells to behave very differently in response to DNA alkylation or to nucleotide depletion. While cells lacking Rad53 are unable to activate the checkpoint response to HU or MMS, so that they rapidly lose viability, a reduction in Rad53 enhances cell survival only after DNA alkylation. This reduction in the level of Rad53 allows S-phase cells to maintain the stability of DNA replication forks upon MMS treatment, but does not prevent the collapse of forks in HU. Our results may have important implications for cancer therapies, as they suggest that partial impairment of the S-phase checkpoint Rad53/Chk2 kinase provides cells with a growth advantage in the presence of drugs that damage DNA.  相似文献   

14.
Taylor M  Moore K  Murray J  Aves SJ  Price C 《DNA Repair》2011,10(11):1154-1163
Initiation of DNA replication in eukaryotes is a highly conserved and ordered process involving the co-ordinated, stepwise association of distinct proteins at multiple origins of replication throughout the genome. Here, taking Schizosaccharomyces pombe as a model, the role of Rad4(TopBP1) in the assembly of the replication complex has been examined. Quantitative chromatin immunoprecipitation experiments confirm that Rad4(TopBP1) associates with origins of DNA replication and, in addition, demonstrate that the protein is not present within the active replisome. A direct interaction between Rad4(TopBP1) and Mcm10 is shown and this is reflected in the Rad4(TopBP1)-dependent origin association of Mcm10. Rad4(TopBP1) is also shown to interact with Sld2 and Sld3 and to be required for the stable origin association of these two proteins. Rad4(TopBP1) chromatin association at stalled replication forks was found to be dependent upon the checkpoint protein Rad9, which was not required for Rad4(TopBP1) origin association. Comparison of the levels of chromatin association at origins of replication and stalled replication forks and the differential requirement for Rad9 suggest functional differences for Rad4(TopBP1) at these distinct sites.  相似文献   

15.
Kai M  Wang TS 《Mutation research》2003,532(1-2):59-73
Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Polkappa). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks.Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development.  相似文献   

16.
During replication arrest, the DNA replication checkpoint plays a crucial role in the stabilization of the replisome at stalled forks, thus preventing the collapse of active forks and the formation of aberrant DNA structures. How this checkpoint acts to preserve the integrity of replication structures at stalled fork is poorly understood. In Schizosaccharomyces pombe, the DNA replication checkpoint kinase Cds1 negatively regulates the structure-specific endonuclease Mus81/Eme1 to preserve genomic integrity when replication is perturbed. Here, we report that, in response to hydroxyurea (HU) treatment, the replication checkpoint prevents S-phase-specific DNA breakage resulting from Mus81 nuclease activity. However, loss of Mus81 regulation by Cds1 is not sufficient to produce HU-induced DNA breaks. Our results suggest that unscheduled cleavage of stalled forks by Mus81 is permitted when the replisome is not stabilized by the replication checkpoint. We also show that HU-induced DNA breaks are partially dependent on the Rqh1 helicase, the fission yeast homologue of BLM, but are independent of its helicase activity. This suggests that efficient cleavage of stalled forks by Mus81 requires Rqh1. Finally, we identified an interplay between Mus81 activity at stalled forks and the Chk1-dependent DNA damage checkpoint during S-phase when replication forks have collapsed.  相似文献   

17.
The S‐phase checkpoint is a surveillance mechanism, mediated by the protein kinases Mec1 and Rad53 in the budding yeast Saccharomyces cerevisiae (ATR and Chk2 in human cells, respectively) that responds to DNA damage and replication perturbations by co‐ordinating a global cellular response necessary to maintain genome integrity. A key aspect of this response is the stabilization of DNA replication forks, which is critical for cell survival. A defective checkpoint causes irreversible replication‐fork collapse and leads to genomic instability, a hallmark of cancer cells. Although the precise mechanisms by which Mec1/Rad53 maintain functional replication forks are currently unclear, our knowledge about this checkpoint function has significantly increased during the last years. Focusing mainly on the advances obtained in S. cerevisiae, the present review will summarize our understanding of how the S‐phase checkpoint preserves the integrity of DNA replication forks and discuss the most recent findings on this topic.  相似文献   

18.
Rad17, Rad1, Hus1, and Rad9 are key participants in checkpoint signaling pathways that block cell cycle progression in response to genotoxins. Biochemical and molecular modeling data predict that Rad9, Hus1, and Rad1 form a heterotrimeric complex, dubbed 9-1-1, which is loaded onto chromatin by a complex of Rad17 and the four small replication factor C (RFC) subunits (Rad17-RFC) in response to DNA damage. It is unclear what checkpoint proteins or checkpoint signaling events regulate the association of the 9-1-1 complex with DNA. Here we show that genotoxin-induced chromatin binding of 9-1-1 does not require the Rad9-inducible phosphorylation site (Ser-272). Although we found that Rad9 undergoes an additional phosphatidylinositol 3-kinase-related kinase (PIKK)-dependent posttranslational modification, we also show that genotoxin-triggered 9-1-1 chromatin binding does not depend on the catalytic activity of the PIKKs ataxia telangiectasia-mutated (ATM), ataxia telangiectasia and Rad3-related (ATR), or DNA-PK. Additionally, 9-1-1 chromatin binding does not require DNA replication, suggesting that the complex can be loaded onto DNA in response to DNA structures other than stalled DNA replication forks. Collectively, these studies demonstrate that 9-1-1 chromatin binding is a proximal event in the checkpoint signaling cascade.  相似文献   

19.
DNA-end resection, the generation of single-stranded DNA at DNA double strand break (DSB) ends, is critical for controlling the many cellular responses to breaks. Here we show that the conserved DNA damage checkpoint sliding clamp (the 9-1-1 complex) plays two opposing roles coordinating DSB resection in budding yeast. We show that the major effect of 9-1-1 is to inhibit resection by promoting the recruitment of Rad953BP1 near DSBs. However, 9-1-1 also stimulates resection by Exo1- and Dna2-Sgs1-dependent nuclease/helicase activities, and this can be observed in the absence of Rad953BP1. Our new data resolve the controversy in the literature about the effect of the 9-1-1 complex on DSB resection. Interestingly, the inhibitory role of 9-1-1 on resection is not observed near uncapped telomeres because less Rad953BP1 is recruited near uncapped telomeres. Thus, 9-1-1 both stimulates and inhibits resection and the effects of 9-1-1 are modulated by different regions of the genome. Our experiments illustrate the central role of the 9-1-1 checkpoint sliding clamp in the DNA damage response network that coordinates the response to broken DNA ends. Our results have implications in all eukaryotic cells.  相似文献   

20.
The checkpoint proteins Rad53 and Mec1-Ddc2 regulate many aspects of cell metabolism in response to DNA damage. We have examined the relative importance of downstream checkpoint effectors on cell viability. Checkpoint regulation of mitosis, gene expression, and late origin firing make only modest contributions to viability. By contrast, the checkpoint is essential for preventing irreversible breakdown of stalled replication forks. Moreover, recruitment of Ddc2 to nuclear foci and subsequent activation of the Rad53 kinase only occur during S phase and require the assembly of replication forks. Thus, DNA replication forks are both activators and primary effectors of the checkpoint pathway in S phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号