首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The balance between cell cycle progression and apoptosis is important for both surveillance against genomic defects and responses to drugs that arrest the cell cycle. In this report, we show that the level of the human anti‐apoptotic protein Mcl‐1 is regulated during the cell cycle and peaks at mitosis. Mcl‐1 is phosphorylated at two sites in mitosis, Ser64 and Thr92. Phosphorylation of Thr92 by cyclin‐dependent kinase 1 (CDK1)–cyclin B1 initiates degradation of Mcl‐1 in cells arrested in mitosis by microtubule poisons. Mcl‐1 destruction during mitotic arrest requires proteasome activity and is dependent on Cdc20/Fizzy, which mediates recognition of mitotic substrates by the anaphase‐promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. Stabilisation of Mcl‐1 during mitotic arrest by mutation of either Thr92 or a D‐box destruction motif inhibits the induction of apoptosis by microtubule poisons. Thus, phosphorylation of Mcl‐1 by CDK1–cyclin B1 and its APC/CCdc20‐mediated destruction initiates apoptosis if a cell fails to resolve mitosis. Regulation of apoptosis, therefore, is linked intrinsically to progression through mitosis and is governed by a temporal mechanism that distinguishes between normal mitosis and prolonged mitotic arrest.  相似文献   

2.
Trametinib is a MEK1/2 inhibitor and exerts anticancer activity against a variety of cancers. However, the effect of Trametinib on colorectal cancer (CRC) is not well understood. In the current study, our results demonstrate the ability of sub‐toxic doses of Trametinib to enhance TRAIL‐mediated apoptosis in CRC cells. Our findings also indicate that Trametinib and TRAIL activate caspase‐dependent apoptosis in CRC cells. Moreover, Mcl‐1 overexpression can reduce apoptosis in CRC cells treated with Trametinib with or without TRAIL. We further demonstrate that Trametinib degrades Mcl‐1 through the proteasome pathway. In addition, GSK‐3β phosphorylates Mcl‐1 at S159 and promotes Mcl‐1 degradation. The E3 ligase FBW7, known to polyubiquitinate Mcl‐1, is involved in Trametinib‐induced Mcl‐1 degradation. Taken together, these results provide the first evidence that Trametinib enhances TRAIL‐mediated apoptosis through FBW7‐dependent Mcl‐1 ubiquitination and degradation.  相似文献   

3.
4.
5.
Bioreactor stresses, including nutrient deprivation, shear stress, and byproduct accumulation can cause apoptosis, leading to lower recombinant protein yields and increased costs in downstream processing. Although cell engineering strategies utilizing the overexpression of antiapoptotic Bcl‐2 family proteins such as Bcl‐2 and Bcl‐xL potently inhibit apoptosis, no studies have examined the use of the Bcl‐2 family protein, Mcl‐1, in commercial mammalian cell culture processes. Here, we overexpress both the wild type Mcl‐1 protein and a Mcl‐1 mutant protein that is not degraded by the proteasome in a serum‐free Chinese hamster ovary (CHO) cell line producing a therapeutic antibody. The expression of Mcl‐1 led to increased viabilities in fed‐batch culture, with cell lines expressing the Mcl‐1 mutant maintaining ~90% viability after 14 days when compared with 65% for control cells. In addition to enhanced culture viability, Mcl‐1‐expressing cell lines were isolated that consistently showed increases in antibody production of 20–35% when compared with control cultures. The quality of the antibody product was not affected in the Mcl‐1‐expressing cell lines, and Mcl‐1‐expressing cells exhibited 3‐fold lower caspase‐3 activation when compared with the control cell lines. Altogether, the expression of Mcl‐1 represents a promising alternative cell engineering strategy to delay apoptosis and increase recombinant protein production in CHO cells. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

6.
Mitochondria actively contribute to apoptotic cell death through mechanisms including the loss of integrity of the outer mitochondrial membrane, the release of intermembrane space proteins, such as cytochrome c, in the cytosol and the caspase cascade activation. This process is the result of careful cooperation not only among members of the Bcl‐2 family but also dynamin‐related proteins. These events are often accompanied by fission of the organelle, thus linking mitochondrial dynamics to apoptosis. Emerging evidences are suggesting a fine regulation of mitochondrial morphology by Bcl‐2 family members and active participation of fission–fusion proteins in apoptosis. The debate whether in mitochondrial morphogenesis the role of Bcl‐2 family members is functionally distinct from their role in apoptosis is still open and, above all, which morphological changes are associated with cell death sensitisation. This review will cover the findings on how the mitochondrial fission and fusion machinery may intersect apoptotic pathways focusing on recent advances on the key role played by Mcl‐1.  相似文献   

7.
8.
9.
Using multiplexed quantitative proteomics, we analyzed cell cycle‐dependent changes of the human proteome. We identified >4,400 proteins, each with a six‐point abundance profile across the cell cycle. Hypothesizing that proteins with similar abundance profiles are co‐regulated, we clustered the proteins with abundance profiles most similar to known Anaphase‐Promoting Complex/Cyclosome (APC/C) substrates to identify additional putative APC/C substrates. This protein profile similarity screening (PPSS) analysis resulted in a shortlist enriched in kinases and kinesins. Biochemical studies on the kinesins confirmed KIFC1, KIF18A, KIF2C, and KIF4A as APC/C substrates. Furthermore, we showed that the APC/CCDH1‐dependent degradation of KIFC1 regulates the bipolar spindle formation and proper cell division. A targeted quantitative proteomics experiment showed that KIFC1 degradation is modulated by a stabilizing CDK1‐dependent phosphorylation site within the degradation motif of KIFC1. The regulation of KIFC1 (de‐)phosphorylation and degradation provides insights into the fidelity and proper ordering of substrate degradation by the APC/C during mitosis.  相似文献   

10.
11.
In the present investigation, we determined the chemotherapeutic efficacy of 9‐bromonoscapine (Br‐Nos), a more potent noscapine analog, on MCF10A, spontaneously immortalized human normal breast epithelial cells and MCF10A‐CSC3, cigarette smoke condensate (CSC)‐transformed cells. The results from cytogenetic analysis showed that Br‐Nos induced polyploidy and telomeric association in MCF10A‐CSC3 cells, while MCF10A cells remained unaffected. Our immunofluorescence data further demonstrated that MCF10A‐CSC3 cells were susceptible to mitotic catastrophe on exposure to Br‐Nos and failed to recover after drug withdrawal. MCF10A‐CSC3 cells exhibited Br‐Nos‐induced aberrant multipolar spindle formation, which irreversibly impaired the alignment of replicated chromosome to the equatorial plane and finally culminated in cell death. Although MCF10A cells upon Br‐Nos treatment showed bipolar spindles with some uncongressed chromosomes, these cells recovered fairly well after drug withdrawal. Our flow‐cytometry analysis data reconfirmed that MCF10A‐CSC3 cells were more susceptible to cell death compared to MCF10A cells. Furthermore, our results suggest that decreased levels of cdc2/cyclin B1 and cdc2 kinase activity are responsible for Br‐Nos‐induced mitotic cell arrest leading to cell death in MCF10A‐CSC3 cells. This study thus explores the underlying mechanism of Br‐Nos‐induced mitotic catastrophe in CSC‐transformed MCF10A‐CSC3 cells and its potential usefulness as a chemotherapeutic agent for prevention of cigarette smoke‐induced breast cancer growth. J. Cell. Biochem. 106: 1146–1156, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Mitotic catastrophe can be defined as a cell death mode that occurs during or shortly after a prolonged/aberrant mitosis, and can show apoptotic or necrotic features. However, conventional procedures for the detection of apoptosis or necrosis, including biochemical bulk assays and cytofluorometric techniques, cannot discriminate among pre-mitotic, mitotic and post-mitotic death, and hence are inappropriate to monitor mitotic catastrophe. To address this issue, we generated isogenic human colon carcinoma cell lines that differ in ploidy and p53 status, yet express similar amounts of fluorescent biosensors that allow for the visualization of chromatin (histone H2B coupled to green fluorescent protein (GFP)) and centrosomes (centrin coupled to the Discosoma striata red fluorescent protein (DsRed)). By combining high-resolution fluorescence videomicroscopy and automated image analysis, we established protocols and settings for the simultaneous assessment of ploidy, mitosis, centrosome number and cell death (which in our model system occurs mainly by apoptosis). Time-lapse videomicroscopy showed that this approach can be used for the high-throughput detection of mitotic catastrophe induced by three mechanistically distinct anti-mitotic agents (dimethylenastron (DIMEN), nocodazole (NDZ) and paclitaxel (PTX)), and – in this context – revealed an important role of p53 in the control of centrosome number.  相似文献   

13.
The Bcl‐2 family modulates sensitivity to chemotherapy in many cancers, including melanoma, in which the RAS/BRAF/MEK/ERK pathway is constitutively activated. Mcl‐1, a major anti‐apoptotic protein in the Bcl‐2 family, is extensively expressed in melanoma and contributes to melanoma's well‐documented chemoresistance. Here, we provide the first evidence that Mcl‐1 phosphorylation at T163 by ERK1/2 and JNK is associated with the resistance of melanoma cell lines to the existing BH3 mimetics gossypol, S1 and ABT‐737, and a novel anti‐apoptotic mechanism of phosphorylated Mcl‐1 (pMcl‐1) is revealed. pMcl‐1 antagonized the known BH3 mimetics by sequestering pro‐apoptotic proteins that were released from Bcl‐2/Mcl‐1. Furthermore, an anthraquinone BH3 mimetic, compound 6, was identified to be the first small molecule to that induces endogenous apoptosis in melanoma cells by directly binding Bcl‐2, Mcl‐1, and pMcl‐1 and disrupting the heterodimers of these proteins. Although compound 6 induced upregulation of the pro‐apoptotic protein Noxa, its apoptotic induction was independent of Noxa. These data reveal the promising therapeutic potential of targeting pMcl‐1 to treat melanoma. Compound 6 is therefore a potent drug that targets pMcl‐1 in melanoma.  相似文献   

14.
15.
Mcl‐1 is an antiapoptotic Bcl‐2‐family protein that protects cells against death. Structures of Mcl‐1, and of other anti‐apoptotic Bcl‐2 proteins, reveal a surface groove into which the α‐helical BH3 regions of certain proapoptotic proteins can bind. Despite high overall structural conservation, differences in this groove afford binding specificity that is important for the mechanism of Bcl‐2 family function. We report the crystal structure of human Mcl‐1 bound to a BH3 peptide derived from human Bim and the structures for three complexes that accommodate large physicochemical changes at conserved Bim sites. The mutations had surprisingly modest effects on complex stability, and the structures show that Mcl‐1 can undergo small changes to accommodate the mutant ligands. For example, a shift in a leucine side chain fills a hole left by an isoleucine‐to‐alanine mutation at the first hydrophobic buried position of Bim BH3. Larger changes are also observed, with shifting of helix α3 accommodating an isoleucine‐to‐tyrosine mutation at this same position. We surveyed the variation in available Mcl‐1 and Bcl‐xL structures and observed moderate flexibility that is likely critical for facilitating interactions of diverse BH3‐only proteins with Mcl‐1. With the antiapoptotic Bcl‐2 family members attracting significant attention as therapeutic targets, these structures contribute to our growing understanding of how specificity is achieved and can help to guide the design of novel inhibitors that target Mcl‐1.  相似文献   

16.
Bladder cancer is a common cancer with particularly high recurrence after transurethral resection. Despite improvements in neoadjuvant chemotherapy, the outcome of patients with advanced bladder cancer has changed very little. In this study, the anti‐tumour activities of a novel Polo‐like kinase 1 (PLK1) inhibitor (RO3280) was evaluated in vitro and in vivo in the bladder carcinoma cell lines 5637 and T24. MTT assays, colony‐formation assays, flow cytometry, cell morphological analysis and trypan blue exclusion assays were used to examine the proliferation, cell cycle distribution and apoptosis of bladder carcinoma cells with or without RO3280 treatment. Moreover, real‐time RT‐PCR and Western blotting were used to detect the expressions of genes that are related to these cellular processes. Our results showed that RO3280 inhibited cell growth and cell cycle progression, increased Wee1 expression and cell division cycle protein 2 phosphorylation. In addition, RO3280 induced mitotic catastrophe and apoptosis, increased cleaved PARP (poly ADP‐ribose polymerase) and caspase‐3, and decreased BubR1 expression. The in vivo assay revealed that RO3280 retarded bladder cancer xenograft growth in a nude mouse model. Although further laboratory and pre‐clinical investigations are needed to corroborate these data, our demonstration of bladder cancer growth inhibition and dissemination using a pharmacological inhibitor of PLK1 provides new opportunities for future therapeutic intervention.  相似文献   

17.
Epidermal growth factor (EGF) protects against death receptor induced apoptosis in epithelial cells. Herein, we demonstrate that EGF protection against tumor necrosis factor related apoptosis-inducing ligand (TRAIL) induced apoptosis is mediated by increased expression of the Bcl-2 family member myeloid cell leukemia 1 (Mcl-1). EGF increased the mRNA and protein levels of Mcl-1. Furthermore, expression of ErbB1 alone or in combination with ErbB2 in NIH3T3 cells up-regulates Mcl-1 following EGF treatment. In addition, up-regulation of Mcl-1 by EGF is mediated through AKT and NFkappaB activation since kinase inactive AKT and DeltaIkappaB effectively blocks this up-regulation. NFkappaB was also critical for the ability of EGF to prevent TRAIL induced apoptosis as a dominant negative IkappaB (DeltaIkappaB) blocked NFkappaB activation, and relieved EGF protection against TRAIL mediated mitochondrial cytochrome-c release and apoptosis. Finally, anti-sense oligonucleotides directed against Mcl-1 effectively reduced the protein levels of Mcl-1 and blocked EGF protection against TRAIL induced mitochondrial cytochrome-c release and apoptosis. Taken together, EGF signaling leads to increased Mcl-1 expression that is required for blockage of TRAIL induced apoptosis.  相似文献   

18.
The universal triggering event of eukaryotic chromosome segregation is cleavage of centromeric cohesin by separase. Prior to anaphase, most separase is kept inactive by association with securin. Protein phosphatase 2A (PP2A) constitutes another binding partner of human separase, but the functional relevance of this interaction has remained enigmatic. We demonstrate that PP2A stabilizes separase‐associated securin by dephosphorylation, while phosphorylation of free securin enhances its polyubiquitylation by the ubiquitin ligase APC/C and proteasomal degradation. Changing PP2A substrate phosphorylation sites to alanines slows degradation of free securin, delays separase activation, lengthens early anaphase, and results in anaphase bridges and DNA damage. In contrast, separase‐associated securin is destabilized by introduction of phosphorylation‐mimetic aspartates or extinction of separase‐associated PP2A activity. G2‐ or prometaphase‐arrested cells suffer from unscheduled activation of separase when endogenous securin is replaced by aspartate‐mutant securin. Thus, PP2A‐dependent stabilization of separase‐associated securin prevents precocious activation of separase during checkpoint‐mediated arrests with basal APC/C activity and increases the abruptness and fidelity of sister chromatid separation in anaphase.  相似文献   

19.
Polo‐like kinase 1 (PLK1) is a serine/threonine kinase that plays multiple and essential roles during the cell division cycle. Its inhibition in cultured cells leads to severe mitotic aberrancies and cell death. Whereas previous reports suggested that Plk1 depletion in mice leads to a non‐mitotic arrest in early embryos, we show here that the bi‐allelic Plk1 depletion in mice certainly results in embryonic lethality due to extensive mitotic aberrations at the morula stage, including multi‐ and mono‐polar spindles, impaired chromosome segregation and cytokinesis failure. In addition, the conditional depletion of Plk1 during mid‐gestation leads also to severe mitotic aberrancies. Our data also confirms that Plk1 is completely dispensable for mitotic entry in vivo. On the other hand, Plk1 haploinsufficient mice are viable, and Plk1‐heterozygous fibroblasts do not harbor any cell cycle alterations. Plk1 is overexpressed in many human tumors, suggesting a therapeutic benefit of inhibiting Plk1, and specific small‐molecule inhibitors for this kinase are now being evaluated in clinical trials. Therefore, the different Plk1 mouse models here presented are a valuable tool to reexamine the relevance of the mitotic kinase Plk1 during mammalian development and animal physiology.  相似文献   

20.
Apoptosis is induced by various stresses generated from the extracellular and intracellular environments. The fidelity of the cell cycle is monitored by surveillance mechanisms that arrest its further progression if any crucial process has not been completed or damages are sustained, and then the cells with problems undergo apoptosis. Although the molecular mechanisms involved in the regulation of the cell cycle and that of apoptosis have been elucidated, the links between them are not clear, especially that between cell cycle and death receptor-mediated apoptosis. By using the HeLa.S-Fucci (fluorescent ubiquitination-based cell cycle indicator) cells, we investigated the relationship between the cell cycle progression and apoptotic execution. To monitor apoptotic execution during cell cycle progression, we observed the cells after induction of apoptosis with time-lapse fluorescent microscopy. About 70% of Fas-mediated apoptotic cells were present at G1 phase and about 20% of cells died immediately after cytokinesis, whereas more than 60% of etoposide-induced apoptotic cells were at S/G2 phases in random culture of the cells. These results were confirmed by using synchronized culture of the cells. Furthermore, mitotic cells showed the resistance to Fas-mediated apoptosis. In conclusion, these findings suggest that apoptotic execution is dependent on cell cycle phase and Fas-mediated apoptosis preferentially occurs at G1 phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号