首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clearance of mitochondria following damage is critical for neuronal homeostasis. Here, we investigate the role of Miro proteins in mitochondrial turnover by the PINK1/Parkin mitochondrial quality control system in vitro and in vivo. We find that upon mitochondrial damage, Miro is promiscuously ubiquitinated on multiple lysine residues. Genetic deletion of Miro or block of Miro1 ubiquitination and subsequent degradation lead to delayed translocation of the E3 ubiquitin ligase Parkin onto damaged mitochondria and reduced mitochondrial clearance in both fibroblasts and cultured neurons. Disrupted mitophagy in vivo, upon post‐natal knockout of Miro1 in hippocampus and cortex, leads to a dramatic increase in mitofusin levels, the appearance of enlarged and hyperfused mitochondria and hyperactivation of the integrated stress response (ISR). Altogether, our results provide new insights into the central role of Miro1 in the regulation of mitochondrial homeostasis and further implicate Miro1 dysfunction in the pathogenesis of human neurodegenerative disease.  相似文献   

2.
In neurons, the proper distribution of mitochondria is essential because of a requirement for high energy and calcium buffering during synaptic neurotransmission. The efficient, regulated transport of mitochondria along axons to synapses is therefore crucial for maintaining function. The trafficking kinesin protein (TRAK)/Milton family of proteins comprises kinesin adaptors that have been implicated in the neuronal trafficking of mitochondria via their association with the mitochondrial protein Miro and kinesin motors. In this study, we used gene silencing by targeted shRNAi and dominant negative approaches in conjunction with live imaging to investigate the contribution of endogenous TRAKs, TRAK1 and TRAK2, to the transport of mitochondria in axons of hippocampal pyramidal neurons. We report that both strategies resulted in impairing mitochondrial mobility in axonal processes. Differences were apparent in terms of the contribution of TRAK1 and TRAK2 to this transport because knockdown of TRAK1 but not TRAK2 impaired mitochondrial mobility, yet both TRAK1 and TRAK2 were shown to rescue transport impaired by TRAK1 gene knock-out. Thus, we demonstrate for the first time the pivotal contribution of the endogenous TRAK family of kinesin adaptors to the regulation of mitochondrial mobility.  相似文献   

3.
Trafficking kinesin proteins (TRAKs) 1 and 2 are kinesin-associated proteins proposed to function in excitable tissues as adaptors in anterograde trafficking of cargoes including mitochondria. They are known to associate with N-acetylglucosamine transferase and the mitochondrial rho GTPase, Miro. We used confocal imaging, Förster resonance energy transfer and immunoprecipitations to investigate association between TRAKs1/2, N-acetylglucosamine transferase, the prototypic kinesin-1, KIF5C, and Miro. We demonstrate that in COS-7 cells, N-acetylglucosamine transferase, KIF5C and TRAKs1/2 co-distribute. Förster resonance energy transfer was observed between N-acetylglucosamine transferase and TRAKs1/2. Despite co-distributing with KIF5C and immunoprecipitations demonstrating a TRAK1/2, N-acetylglucosamine transferase and KIF5C ternary complex, no Förster resonance energy transfer was detected between N-acetylglucosamine transferase and KIF5C. KIF5C, N-acetylglucosamine transferase, TRAKs1/2 and Miro formed a quaternary complex. The presence of N-acteylglucosamine transferase partially prevented redistribution of mitochondria induced by trafficking proteins 1/2 and KIF5C. TRAK2 was a substrate for N-acetylglucosamine transferase with TRAK2 (S562) identified as a site of O-N-acetylglucosamine modification. These findings substantiate trafficking kinesin proteins as scaffolds for the formation of a multi-component complex involved in anterograde trafficking of mitochondria. They further suggest that O-glycosylation may regulate complex formation.  相似文献   

4.
Appropriate mitochondrial transport and distribution are essential for neurons because of the high energy and Ca2+ buffering requirements at synapses. Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating synaptic transmission and plasticity. However, whether and how BDNF can regulate mitochondrial transport and distribution are still unclear. Here, we find that in cultured hippocampal neurons, application of BDNF for 15 min decreased the percentage of moving mitochondria in axons, a process dependent on the activation of the TrkB receptor and its downstream PI3K and phospholipase-Cγ signaling pathways. Moreover, the BDNF-induced mitochondrial stopping requires the activation of transient receptor potential canonical 3 and 6 (TRPC3 and TRPC6) channels and elevated intracellular Ca2+ levels. The Ca2+ sensor Miro1 plays an important role in this process. Finally, the BDNF-induced mitochondrial stopping leads to the accumulation of more mitochondria at presynaptic sites. Mutant Miro1 lacking the ability to bind Ca2+ prevents BDNF-induced mitochondrial presynaptic accumulation and synaptic transmission, suggesting that Miro1-mediated mitochondrial motility is involved in BDNF-induced mitochondrial presynaptic docking and neurotransmission. Together, these data suggest that mitochondrial transport and distribution play essential roles in BDNF-mediated synaptic transmission.  相似文献   

5.
Mitochondrial trafficking is influenced by neuronal activity, but it remains unclear how mitochondrial positioning influences neuronal transmission and plasticity. Here, we use live cell imaging with the genetically encoded presynaptically targeted Ca2+ indicator, SyGCaMP5, to address whether presynaptic Ca2+ responses are altered by mitochondria in synaptic terminals. We find that presynaptic Ca2+ signals, as well as neurotransmitter release, are significantly decreased in terminals containing mitochondria. Moreover, the localisation of mitochondria at presynaptic sites can be altered during long‐term activity changes, dependent on the Ca2+‐sensing function of the mitochondrial trafficking protein, Miro1. In addition, we find that Miro1‐mediated activity‐dependent synaptic repositioning of mitochondria allows neurons to homeostatically alter the strength of presynaptic Ca2+ signals in response to prolonged changes in neuronal activity. Our results support a model in which mitochondria are recruited to presynaptic terminals during periods of raised neuronal activity and are involved in rescaling synaptic signals during homeostatic plasticity.  相似文献   

6.
Recent evidence suggests that the predominant astrocyte glutamate transporter, GLT‐1/ Excitatory Amino Acid Transporter 2 (EAAT2) is associated with mitochondria. We used primary cultures of mouse astrocytes to assess co‐localization of GLT‐1 with mitochondria, and tested whether the interaction was dependent on neurons, actin polymerization or the kinesin adaptor, TRAK2. Mouse primary astrocytes were transfected with constructs expressing V5‐tagged GLT‐1, pDsRed1‐Mito with and without dominant negative TRAK2. Astrocytes were visualized using confocal microscopy and co‐localization was quantified using Volocity software. Image analysis of confocal z‐stacks revealed no co‐localization between mitochondria and GLT‐1 in pure astrocyte cultures. Co‐culture of astrocytes with primary mouse cortical neurons revealed more mitochondria in processes and a positive correlation between mitochondria and GLT‐1. This co‐localization was not further enhanced after neuronal depolarization induced by 1 h treatment with 15 mM K+. In pure astrocytes, a rho kinase inhibitor, Y27632 caused the distribution of mitochondria to astrocyte processes without enhancing GLT‐1/mitochondrial co‐localization, however, in co‐cultures, Y27632 abolished mitochondrial:GLT‐1 co‐localization. Disrupting potential mitochondrial: kinesin interactions using dominant negative TRAK2 did not alter GLT‐1 distribution or GLT‐1: mitochondrial co‐localization. We conclude that the association between GLT‐1 and mitochondria is modest, is driven by synaptic activity and dependent on polymerized actin filaments.

  相似文献   


7.
The actin cytoskeleton is essential for polarized, bud-directed movement of cellular membranes in Saccharomyces cerevisiae and thus ensures accurate inheritance of organelles during cell division. Also, mitochondrial distribution and inheritance depend on the actin cytoskeleton, though the precise molecular mechanisms are unknown. Here, we establish the class V myosin motor protein, Myo2, as an important mediator of mitochondrial motility in budding yeast. We found that mutants with abnormal expression levels of Myo2 or its associated light chain, Mlc1, exhibit aberrant mitochondrial morphology and loss of mitochondrial DNA. Specific mutations in the globular tail of Myo2 lead to aggregation of mitochondria in the mother cell. Isolated mitochondria lacking functional Myo2 are severely impaired in their capacity to bind to actin filaments in vitro. Time-resolved fluorescence microscopy revealed a block of bud-directed anterograde mitochondrial movement in cargo binding-defective myo2 mutant cells. We conclude that Myo2 plays an important and direct role for mitochondrial motility and inheritance in budding yeast.  相似文献   

8.
Accurate control of macromolecule transport between nucleus and cytoplasm underlines several essential biological processes, including gene expression. According to the canonical model, nuclear import of soluble proteins is based on nuclear localization signals and transport factors. We challenge this view by showing that nuclear localization of the actin‐dependent motor protein Myosin‐1C (Myo1C) resembles the diffusion–retention mechanism utilized by inner nuclear membrane proteins. We show that Myo1C constantly shuttles in and out of the nucleus and that its nuclear localization does not require soluble factors, but is dependent on phosphoinositide binding. Nuclear import of Myo1C is preceded by its interaction with the endoplasmic reticulum, and phosphoinositide binding is specifically required for nuclear import, but not nuclear retention, of Myo1C. Our results therefore demonstrate, for the first time, that membrane association and binding to nuclear partners is sufficient to drive nuclear localization of also soluble proteins, opening new perspectives to evolution of cellular protein sorting mechanisms.  相似文献   

9.
The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development.  相似文献   

10.
Mitochondrial transport plays an important role in matching mitochondrial distribution to localized energy production and calcium buffering requirements. Here, we demonstrate that Miro1, an outer mitochondrial membrane (OMM) protein crucial for the regulation of mitochondrial trafficking and distribution, is a substrate of the PINK1/Parkin mitochondrial quality control system in human dopaminergic neuroblastoma cells. Moreover, Miro1 turnover on damaged mitochondria is altered in Parkinson disease (PD) patient-derived fibroblasts containing a pathogenic mutation in the PARK2 gene (encoding Parkin). By analyzing the kinetics of Miro1 ubiquitination, we further demonstrate that mitochondrial damage triggers rapid (within minutes) and persistent Lys-27-type ubiquitination of Miro1 on the OMM, dependent on PINK1 and Parkin. Proteasomal degradation of Miro1 is then seen on a slower time scale, within 2–3 h of the onset of ubiquitination. We find Miro ubiquitination in dopaminergic neuroblastoma cells is independent of Miro1 phosphorylation at Ser-156 but is dependent on the recently identified Ser-65 residue within Parkin that is phosphorylated by PINK1. Interestingly, we find that Miro1 can stabilize phospho-mutant versions of Parkin on the OMM, suggesting that Miro is also part of a Parkin receptor complex. Moreover, we demonstrate that Ser-65 in Parkin is critical for regulating Miro levels upon mitochondrial damage in rodent cortical neurons. Our results provide new insights into the ubiquitination-dependent regulation of the Miro-mediated mitochondrial transport machinery by PINK1/Parkin and also suggest that disruption of this regulation may be implicated in Parkinson disease pathogenesis.  相似文献   

11.
Mitochondria are frequently observed in the vicinity of chloroplasts in photosynthesizing cells, and this association is considered necessary for their metabolic interactions. We previously reported that, in leaf palisade cells of Arabidopsis thaliana, mitochondria exhibit blue‐light‐dependent redistribution together with chloroplasts, which conduct accumulation and avoidance responses under the control of blue‐light receptor phototropins. In this study, precise motility analyses by fluorescent microscopy revealed that the individual mitochondria in palisade cells, labeled with green fluorescent protein, exhibit typical stop‐and‐go movement. When exposed to blue light, the velocity of moving mitochondria increased in 30 min, whereas after 4 h, the frequency of stoppage of mitochondrial movement markedly increased. Using different mutant plants, we concluded that the presence of both phototropin1 and phototropin2 is necessary for the early acceleration of mitochondrial movement. On the contrary, the late enhancement of stoppage of mitochondrial movement occurs only in the presence of phototropin2 and only when intact photosynthesis takes place. A plasma‐membrane ghost assay suggested that the stopped mitochondria are firmly adhered to chloroplasts. These results indicate that the physical interaction between mitochondria and chloroplasts is cooperatively mediated by phototropin2‐ and photosynthesis‐dependent signals. The present study might add novel regulatory mechanism for light‐dependent plant organelle interactions.  相似文献   

12.
Neurons, perhaps more than any other cell type, depend on mitochondrial trafficking for their survival. Recent studies have elucidated a motor/adaptor complex on the mitochondrial surface that is shared between neurons and other animal cells. In addition to kinesin and dynein, this complex contains the proteins Miro (also called RhoT1/2) and milton (also called TRAK1/2) and is responsible for much, although not necessarily all, mitochondrial movement. Elucidation of the complex has permitted inroads for understanding how this movement is regulated by a variety of intracellular signals, although many mysteries remain. Regulating mitochondrial movement can match energy demand to energy supply throughout the extraordinary architecture of these cells and can control the clearance and replenishing of mitochondria in the periphery. Because the extended axons of neurons contain uniformly polarized microtubules, they have been useful for studying mitochondrial motility in conjunction with biochemical assays in many cell types.  相似文献   

13.
During development, axons are guided to their target areas and provide local branching. Spatiotemporal regulation of axon branching is crucial for the establishment of functional connections between appropriate pre‐ and postsynaptic neurons. Common understanding has been that neuronal activity contributes to the proper axon branching; however, intracellular mechanisms that underlie activity‐dependent axon branching remain elusive. Here, we show, using primary cultures of the dentate granule cells, that neuronal depolarization‐induced rebalance of mitochondrial motility between anterograde versus retrograde transport underlies the proper formation of axonal branches. We found that the depolarization‐induced branch formation was blocked by the uncoupler p‐trifluoromethoxyphenylhydrazone, which suggests that mitochondria‐derived ATP mediates the observed phenomena. Real‐time analysis of mitochondrial movement defined the molecular mechanisms by showing that the pharmacological activation of AMP‐activated protein kinase (AMPK) after depolarization increased anterograde transport of mitochondria into axons. Simultaneous imaging of axonal morphology and mitochondrial distribution revealed that mitochondrial localization preceded the emergence of axonal branches. Moreover, the higher probability of mitochondrial localization was correlated with the longer lifetime of axon branches. We qualitatively confirmed that neuronal ATP levels decreased immediately after depolarization and found that the phosphorylated form of AMPK was increased. Thus, this study identifies a novel role for AMPK in the transport of axonal mitochondria that underlie the neuronal activity‐dependent formation of axon branches. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 557–573, 2014  相似文献   

14.
Mesenchymal stem cells (MSC) are capable of protecting cells harboring mitochondrial damage. This protection is associated with the transfer of mitochondria through tunneling nanotubes (TNT) from MSC to the injured cells. In this issue of The EMBO Journal, the group of Anurag Agrawal shows that mitochondrial transfer is dependent on the levels of Miro1, a mitochondrial Rho‐GTPase that regulates intercellular mitochondrial movement. Miro1 is the first protein shown to accelerate mitochondrial transfer. Amplifying the mitochondrial transfer phenomenon may allow for the study of the mechanisms that regulate it and contribute to our understanding of its role in disease and aging.  相似文献   

15.
There is emerging evidence that stem cells can rejuvenate damaged cells by mitochondrial transfer. Earlier studies show that epithelial mitochondrial dysfunction is critical in asthma pathogenesis. Here we show for the first time that Miro1, a mitochondrial Rho‐GTPase, regulates intercellular mitochondrial movement from mesenchymal stem cells (MSC) to epithelial cells (EC). We demonstrate that overexpression of Miro1 in MSC (MSCmiroHi) leads to enhanced mitochondrial transfer and rescue of epithelial injury, while Miro1 knockdown (MSCmiroLo) leads to loss of efficacy. Treatment with MSCmiroHi was associated with greater therapeutic efficacy, when compared to control MSC, in mouse models of rotenone (Rot) induced airway injury and allergic airway inflammation (AAI). Notably, airway hyperresponsiveness and remodeling were reversed by MSCmiroHi in three separate allergen‐induced asthma models. In a human in vitro system, MSCmiroHi reversed mitochondrial dysfunction in bronchial epithelial cells treated with pro‐inflammatory supernatant of IL‐13‐induced macrophages. Anti‐inflammatory MSC products like NO, TGF‐β, IL‐10 and PGE2, were unchanged by Miro1 overexpression, excluding non‐specific paracrine effects. In summary, Miro1 overexpression leads to increased stem cell repair.  相似文献   

16.
Mutations in Pten-induced kinase 1 (PINK1) are linked to early-onset familial Parkinson's disease (FPD). PINK1 has previously been implicated in mitochondrial fission/fusion dynamics, quality control, and electron transport chain function. However, it is not clear how these processes are interconnected and whether they are sufficient to explain all aspects of PINK1 pathogenesis. Here we show that PINK1 also controls mitochondrial motility. In Drosophila, downregulation of dMiro or other components of the mitochondrial transport machinery rescued dPINK1 mutant phenotypes in the muscle and dopaminergic (DA) neurons, whereas dMiro overexpression alone caused DA neuron loss. dMiro protein level was increased in dPINK1 mutant but decreased in dPINK1 or dParkin overexpression conditions. In Drosophila larval motor neurons, overexpression of dPINK1 inhibited axonal mitochondria transport in both anterograde and retrograde directions, whereas dPINK1 knockdown promoted anterograde transport. In HeLa cells, overexpressed hPINK1 worked together with hParkin, another FPD gene, to regulate the ubiquitination and degradation of hMiro1 and hMiro2, apparently in a Ser-156 phosphorylation-independent manner. Also in HeLa cells, loss of hMiro promoted the perinuclear clustering of mitochondria and facilitated autophagy of damaged mitochondria, effects previously associated with activation of the PINK1/Parkin pathway. These newly identified functions of PINK1/Parkin and Miro in mitochondrial transport and mitophagy contribute to our understanding of the complex interplays in mitochondrial quality control that are critically involved in PD pathogenesis, and they may explain the peripheral neuropathy symptoms seen in some PD patients carrying particular PINK1 or Parkin mutations. Moreover, the different effects of loss of PINK1 function on Miro protein level in Drosophila and mouse cells may offer one explanation of the distinct phenotypic manifestations of PINK1 mutants in these two species.  相似文献   

17.
Two actin-dependent force generators contribute to mitochondrial inheritance: Arp2/3 complex and the myosin V Myo2p (together with its Rab-like binding partner Ypt11p). We found that deletion of YPT11, reduction of the length of the Myo2p lever arm (myo2-Delta6IQ), or deletion of MYO4 (the other yeast myosin V), had no effect on mitochondrial morphology, colocalization of mitochondria with actin cables, or the velocity of bud-directed mitochondrial movement. In contrast, retention of mitochondria in the bud was compromised in YPT11 and MYO2 mutants. Retention of mitochondria in the bud tip of wild-type cells results in a 60% decrease in mitochondrial movement in buds compared with mother cells. In ypt11Delta mutants, however, the level of mitochondrial motility in buds was similar to that observed in mother cells. Moreover, the myo2-66 mutant, which carries a temperature-sensitive mutation in the Myo2p motor domain, exhibited a 55% decrease in accumulation of mitochondria in the bud tip, and an increase in accumulation of mitochondria at the retention site in the mother cell after shift to restrictive temperatures. Finally, destabilization of actin cables and the resulting delocalization of Myo2p from the bud tip had no significant effect on the accumulation of mitochondria in the bud tip.  相似文献   

18.
Mitochondria are fundamentally important in cell function, and their malfunction can cause the development of cancer, cardiovascular disease, and neuronal disorders. Myosin 19 (Myo19) shows discrete localization with mitochondria and is thought to play an important role in mitochondrial dynamics and function; however, the function of Myo19 in mitochondrial dynamics at the cellular and molecular levels is poorly understood. Critical missing information is whether Myo19 is a processive motor that is suitable for transportation of mitochondria. Here, we show for the first time that single Myo19 molecules processively move on actin filaments and can transport mitochondria in cells. We demonstrate that Myo19 dimers having a leucine zipper processively moved on cellular actin tracks in demembraned cells with a velocity of 50 to 60 nm/s and a run length of ∼0.4 μm, similar to the movement of isolated mitochondria from Myo19 dimer-transfected cells on actin tracks, suggesting that the Myo19 dimer can transport mitochondria. Furthermore, we show single molecules of Myo19 dimers processively moved on single actin filaments with a large step size of ∼34 nm. Importantly, WT Myo19 single molecules without the leucine zipper processively move in filopodia in living cells similar to Myo19 dimers, whereas deletion of the tail domain abolished such active movement. These results suggest that Myo19 can processively move on actin filaments when two Myo19 monomers form a dimer, presumably as a result of tail–tail association. In conclusion, Myo19 molecules can directly transport mitochondria on actin tracks within living cells.  相似文献   

19.
Miro is a highly conserved calcium‐binding GTPase at the regulatory nexus of mitochondrial transport and autophagy. Here we present crystal structures comprising the tandem EF hand and carboxy terminal GTPase (cGTPase) domains of Drosophila Miro. The structures reveal two previously unidentified ‘hidden’ EF hands, each paired with a canonical EF hand. Each EF hand pair is bound to a helix that structurally mimics an EF hand ligand. A key nucleotide‐sensing element and a Pink1 phosphorylation site both lie within an extensive EF hand–cGTPase interface. Our results indicate structural mechanisms for calcium, nucleotide and phosphorylation‐dependent regulation of mitochondrial function by Miro.  相似文献   

20.
The inheritance of mitochondria in yeast depends on bud-directed transport along actin filaments. It is a matter of debate whether anterograde mitochondrial movement is mediated by the myosin-related motor protein Myo2 or by motor-independent mechanisms. We show that mutations in the Myo2 cargo binding domain impair entry of mitochondria into the bud and are synthetically lethal with deletion of the YPT11 gene encoding a rab-type guanosine triphosphatase. Mitochondrial distribution defects and synthetic lethality were rescued by a mitochondria-specific Myo2 variant that carries a mitochondrial outer membrane anchor. Furthermore, immunoelectron microscopy revealed Myo2 on isolated mitochondria. Thus, Myo2 is an essential and direct mediator of bud-directed mitochondrial movement in yeast. Accumulating genetic evidence suggests that maintenance of mitochondrial morphology, Ypt11, and retention of mitochondria in the bud contribute to Myo2-dependent inheritance of mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号