首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mesenchymal stem cells (MSCs) are multipotent stem cells and show distinct features such as capability for self-renewal and differentiation into several lineages of cells including osteoblasts, chondrocytes, and adipocytes. In this study, the methylation status of the promoter region of zinc finger and BTB domain containing 16 (ZBTB16), twist-related protein 1(Twist1), de novo DNA methyltransferases 3A (DNMT3A), SRY-box 9 (Sox9), osteocalcin (OCN), and peroxisome proliferator-activated receptor γ2 (PPARγ2) genes and their messenger RNA (mRNA) expression levels were evaluated during the osteoblastic differentiation of MSCs (ODMSCs). We planned two experimental groups including zoledronic acid (ZA)-treated and nontreated cells (negative control) which both were differentiated into the osteoblasts. Methylation level of DNA in the promoter regions was assayed by methylation-specific-quantitative polymerase chain reaction (MS-qPCR), and mRNA levels of the target inhibitory/stimulatory genes during osteoblastic differentiation of MSCs were measured using real-time PCR. During the experimental induction of ODMSCs, the mRNA expression of the OCN gene was upregulated and methylation level of its promoter region was decreased. Moreover, Sox9 and PPARγ2 mRNA levels were attenuated and their promoter regions methylation levels were significantly augmented. However, the mRNA expression of the DNMT3A was not affected during the ODMSCs though its methylation rate was increased. In addition, ZA could enhance the expression of the ZBTB16 and decrease its promoter regions methylation and on the opposite side, it diminished mRNA expression of Sox9, Twist1, and PPARγ2 genes and increased their methylation rates. Intriguingly, ZA did not show a significant impact on gene expression and methylation levels the OCN and DNMT3A. We found that methylation of the promoter regions of Sox9, OCN, and PPARγ2 genes might be one of the main mechanisms adjusting the genes expression during the ODMSCs. Furthermore, we noticed that ZA can accelerate the MSCs differentiation to the osteoblast cells via two regulatory processes; suppression of osteoblastic differentiation inhibitor genes including Sox9, Twist1, and PPARγ2, and through promotion of the ZBTB16 expression.  相似文献   

3.
4.
5.
The C‐terminal three‐Cys2His2 zinc‐finger domain (TZD) of mouse testis zinc‐finger protein binds to the 5′‐TGTACAGTGT‐3′ at the Aie1 (aurora‐C) promoter with high specificity. Interestingly, the primary sequence of TZD is unique, possessing two distinct linkers, TGEKP and GAAP, and distinct residues at presumed DNA binding sites at each finger, especially finger 3. A Kd value of ~10?8 M was obtained from surface plasmon resonance analysis for the TZD‐DNA complex. NMR structure of the free TZD showed that each zinc finger forms a typical ββα fold. On binding to DNA, chemical shift perturbations and the R2 transverse relaxation rate in finger 3 are significantly smaller than those in fingers 1 and 2, which indicates that the DNA binding affinity in finger 3 is weaker. Furthermore, the shift perturbations between TZD in complex with the cognate DNA and its serial mutants revealed that both ADE7 and CYT8, underlined in 5′‐ATATGTACAGTGTTAT‐3′, are critical in specific binding, and the DNA binding in finger 3 is sequence independent. Remarkably, the shift perturbations in finger 3 on the linker mutation of TZD (GAAP mutated to TGEKP) were barely detected, which further indicates that finger 3 does not play a critical role in DNA sequence‐specific recognition. The complex model showed that residues important for DNA binding are mainly located on positions ?1, 2, 3, and 6 of α‐helices in fingers 1 and 2. The DNA sequence and nonsequence‐specific bindings occurring simultaneously in TZD provide valuable information for better understanding of protein–DNA recognition. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
7.
8.
9.
10.
11.
Cys(2)-His(2)-type zinc finger proteins have a tandemly repeated array structure consisting of independent finger modules. They are expected to elevate the DNA binding affinity and specificity by increasing the number of finger modules. To investigate the relation between the number and the DNA binding affinity of the zinc finger, we have designed the two- to four-finger peptides by connecting the central zinc finger (finger 2) of Sp1 with the canonical linker sequence, Thr-Gly-Glu-Lys-Pro. Gel mobility shift assays reveal that the cognate three- and four-finger peptides, Sp1(zf222) and Sp1(zf2222), strongly bind to the predicted target sequences, but the two-finger peptide, Sp1(zf22), does not. Of special interest is the fact that the dissociation constant for Sp1(zf2222) binding to the target DNA is comparable to that for Sp1(zf222). The methylation interference, DNase I and hydroxyl radical footprintings, and circular permutation analyses demonstrate that Sp1(zf2222) binds to its target site with three successive zinc fingers and the binding of the fourth zinc finger is inhibited by DNA bending induced by the binding of the three-finger domain. The present results strongly indicate that the zinc finger protein binds to DNA by the three-finger domain as one binding unit. In addition, this information provides the basis for the design of a novel multifinger protein with high affinity and specificity for long DNA sequences, such as chromosomal DNAs.  相似文献   

12.
Integration of HIV‐1 cDNA into the host genome is a crucial step for viral propagation. Two nucleotides, cytosine and adenine (CA), conserved at the 3′ end of the viral cDNA genome, are cleaved by the viral integrase (IN) enzyme. As IN plays a crucial role in the early stages of the HIV‐1 life cycle, substrate blockage of IN is an attractive strategy for therapeutic interference. In this study, we used the 2‐LTR‐circle junctions of HIV‐1 DNA as a model to design zinc finger protein (ZFP) targeting at the end terminal portion of HIV‐1 LTR. A six‐contiguous ZFP, namely 2LTRZFP was designed using zinc finger tools. The designed motif was expressed and purified from E. coli to determine its binding properties. Surface plasmon resonance (SPR) was used to determine the binding affinity of 2LTRZFP to its target DNA. The level of dissociation constant (Kd) was 12.0 nM. The competitive SPR confirmed that 2LTRZFP specifically interacted with its target DNA. The qualitative binding activity was subsequently determined by EMSA and demonstrated the aforementioned correlation. In addition, molecular modeling and binding energy analyses were carried out to provide structural insight into the binding of 2LTRZFP to the specific and nonspecific DNA target. It is suggested that hydrogen‐bonding interactions play a key role in the DNA recognition mechanisms of the designed ZFP. Our study suggested an alternative HIV therapeutic strategy using ZFP interference of the HIV integration process.  相似文献   

13.
DNA methylation is an essential epigenetic mark. Three classes of mammalian proteins recognize methylated DNA: MBD proteins, SRA proteins and the zinc-finger proteins Kaiso, ZBTB4 and ZBTB38. The last three proteins can bind either methylated DNA or unmethylated consensus sequences; how this is achieved is largely unclear. Here, we report that the human zinc-finger proteins Kaiso, ZBTB4 and ZBTB38 can bind methylated DNA in a sequence-specific manner, and that they may use a mode of binding common to other zinc-finger proteins. This suggests that many other sequence-specific methyl binding proteins may exist.  相似文献   

14.
15.
Zinc finger modules are capable of specifically interacting with DNA that contains 5-methylcytosine (5-mC) in place of cytosine, suggesting that zinc finger-DNA binding could be regulated by extrinsic methylation of DNA. Here, we have used phage display to engineer zinc finger proteins that detect and discriminate DNA methylation by the prokaryotic enzymes HaeIII and HhaI. In these systems, zinc finger-DNA complexes are induced by DNA modification using the appropriate enzyme, which can therefore act as a switch. To further develop the specificity of the switch, zinc finger discrimination between 5-mC and thymine in DNA sequences is demonstrated despite the presence of the characteristic major groove methyl group that is common to both bases. Specificity was achieved using a DNA-binding strategy involving synergy between adjacent zinc fingers. We propose that engineered zinc fingers that recognise particular DNA modifications, such as sequence-specific DNA methylation, could be integrated into artificial regulatory circuits for the control of gene expression and other biological processes.  相似文献   

16.
17.
18.
19.
20.
Active DNA demethylation is critical for altering DNA methylation patterns and regulating gene expression. The 5‐methylcytosine DNA glycosylase/lyase ROS1 initiates a base‐excision repair pathway for active DNA demethylation and is required for the prevention of DNA hypermethylation at 1 000s of genomic regions in Arabidopsis. How ROS1 is regulated and targeted to specific genomic regions is not well understood. Here, we report the discovery of an Arabidopsis protein complex that contains ROS1, regulates ROS1 gene expression, and likely targets the ROS1 protein to specific genomic regions. ROS1 physically interacts with a WD40 domain protein (RWD40), which in turn interacts with a methyl‐DNA binding protein (RMB1) as well as with a zinc finger and homeobox domain protein (RHD1). RMB1 binds to DNA that is methylated in any sequence context, and this binding is necessary for its function in vivo. Loss‐of‐function mutations in RWD40, RMB1, or RHD1 cause DNA hypermethylation at several tested genomic regions independently of the known ROS1 regulator IDM1. Because the hypermethylated genomic regions include the DNA methylation monitoring sequence in the ROS1 promoter, plants mutated in RWD40, RMB1, or RHD1 show increased ROS1 expression. Importantly, ROS1 binding to the ROS1 promoter requires RWD40, RMB1, and RHD1, suggesting that this complex dictates ROS1 targeting to this locus. Our results demonstrate that ROS1 forms a protein complex with RWD40, RMB1, and RHD1, and that this novel complex regulates active DNA demethylation at several endogenous loci in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号