首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
细胞的转录组决定其生理状态,每个细胞的转录组都是唯一的。借助单细胞转录组测序可分析单个干细胞的转录组特征,通过进一步的运算方法可以根据转录组特征对细胞进行细胞状态测定以及系谱分化特征的重建,在干细胞及组织发育研究中发挥了强大的作用,推动了其快速发展,加速了对干细胞分化及组织发育的相关过程及调控路径的认识。尤其是在干细胞领域的应用,得益于新算法的发展,单细胞转录组测序分析可用来阐述干细胞的起源、异质性,尤其是对干细胞的分化过程进行连续观察。本文主要对应用于干细胞分化相关研究的单细胞转录组测序数据新的算法及其应用进行了综述。  相似文献   

2.
Stem cell maintenance depends on their surrounding microenvironment, and aberrancies in the environment have been associated with tumorigenesis. However, it remains to be elucidated whether an environmental aberrancy can act as a carcinogenic stress for cellular transformation of differentiating stem cells into cancer stem cells. Here, utilizing mouse embryonic stem cells as a model, it was illustrated that environmental aberrancy during differentiation leads to the emergence of pluripotent cells showing cancerous characteristics. Analogous to precancerous stages, DNA lesions were spontaneously accumulated during embryonic stem cell differentiation under aberrational environments, which activates barrier responses such as senescence and apoptosis. However, overwhelming such barrier responses, piled-up spheres were subsequently induced from the previously senescent cells. The sphere cells exhibit aneuploidy and dysfunction of the Arf-p53 module as well as enhanced tumorigenicity and a strong self-renewal capacity, suggesting development of cancerous stem cells. Our current study suggests that stem cells differentiating in an aberrational environment are at risk of cellular transformation into malignant counterparts.  相似文献   

3.
Mitochondria have long been recognized as cellular energy power houses that also regulate cellular redox signaling to arbitrate cell survival. Recent studies of mitochondria in stem cells (SCs) demonstrate that they have critical roles beyond this traditional view. Embryonic (E) SCs, termed pluripotent for their ability to differentiate into all cell types within an organism, maintain a limited number of morphologically undifferentiated (electron translucent and poorly formed cristae) mitochondria. As these cells differentiate, their mitochondria undergo a tightly choreographed gain of number, mass and morphological complexity. Therefore, mechanisms that regulate mitochondrial growth, localization, division and partition must play active roles in the maintenance of pluripotency and execution of differentiation. Aberrant mitochondrial dynamics are associated with a plethora of human disorders, for which SCs hold curative potential. Hence, a comprehensive understanding of the mechanisms that regulate mitochondrial dynamics and function in SCs and their overall relationship to the maintenance of pluripotency is pivotal for the progression of therapeutic regenerative medicine.  相似文献   

4.
Cherry AB  Daley GQ 《Cell》2012,148(6):1110-1122
Although development leads unidirectionally toward more restricted cell fates, recent work in cellular reprogramming has proven that one cellular identity can strikingly convert into another, promising countless applications in biomedical research and paving the way for modeling diseases with patient-derived stem cells. To date, there has been little discussion of which disease models are likely to be most informative. Here, we review evidence demonstrating that, because environmental influences and epigenetic signatures are largely erased during reprogramming, patient-specific models of diseases with strong genetic bases and high penetrance are likely to prove most informative in the near term. We also discuss the implications of the new reprogramming paradigm in biomedicine and outline how reprogramming of cell identities is enhancing our understanding of cell differentiation and prospects for cellular therapies and in vivo regeneration.  相似文献   

5.
rx1 and pax6 are necessary for the establishment of the vertebrate eye field and for the maintenance of the retinal stem cells that give rise to multiple retinal cell types. They also are differentially expressed in cellular layers in the retina when cell fates are being specified, and their expression levels differentially affect the production of amacrine cell subtypes. To determine whether rx1 and pax6 expression after the eye field is established simply maintains stem cell-like qualities or affects cell type differentiation, we used hormone-inducible constructs to increase or decrease levels/activity of each protein at two different neural plate stages. Our results indicate that rx1 regulates the size of the retinal stem cell pool because it broadly affected all cell types, whereas pax6 regulates more restricted retinal progenitor cells because it selectively affected different cell types in a time-dependent manner. Analysis of rx1 and pax6 effects on proliferation, and expression of stem cell or differentiation markers demonstrates that rx1 maintains cells in a stem cell state by promoting proliferation and delaying expression of neural identity and differentiation markers. Although pax6 also promotes proliferation, it differentially regulates neural identity and differentiation genes. Thus, these two genes work in parallel to regulate different, but overlapping aspects of retinal cell fate determination.  相似文献   

6.
All living cells utilize intricate DNA repair mechanisms to address numerous types of DNA lesions and to preserve genomic integrity, and pluripotent stem cells have specific needs due to their remarkable ability of self-renewal and differentiation into different functional cell types. Not surprisingly, human stem cells possess a highly efficient DNA repair network that becomes less efficient upon differentiation. Moreover, these cells also have an anaerobic metabolism, which reduces the mitochondria number and the likelihood of oxidative stress, which is highly related to genomic instability. If DNA lesions are not repaired, human stem cells easily undergo senescence, cell death or differentiation, as part of their DNA damage response, avoiding the propagation of stem cells carrying mutations and genomic alterations. Interestingly, cancer stem cells and typical stem cells share not only the differentiation potential but also their capacity to respond to DNA damage, with important implications for cancer therapy using genotoxic agents. On the other hand, the preservation of the adult stem cell pool, and the ability of cells to deal with DNA damage, is essential for normal development, reducing processes of neurodegeneration and premature aging, as one can observe on clinical phenotypes of many human genetic diseases with defects in DNA repair processes. Finally, several recent findings suggest that DNA repair also plays a fundamental role in maintaining the pluripotency and differentiation potential of embryonic stem cells, as well as that of induced pluripotent stem (iPS) cells. DNA repair processes also seem to be necessary for the reprogramming of human cells when iPS cells are produced. Thus, the understanding of how cultured pluripotent stem cells ensure the genetic stability are highly relevant for their safe therapeutic application, at the same time that cellular therapy is a hope for DNA repair deficient patients.  相似文献   

7.
The differentiation of brown adipocyte precursor cells was studied in interscapular brown adipose tissue of adult mice by electron microscopy. Different stages of cell differentiation were characterized in situ. Previous autoradiographic studies suggested that interstitial cells represent the precursor cells of fully differentiated brown adipocytes. The present observations provide morphological evidence for a progressive differentiation of interstitial stem cells into mature brown adipocytes. Four typical stages of development were identified: (1) interstitial cells, (2) protoadipocytes, (3) preadipocytes, and (4) mature brown adipocytes. Interstitial stem cells were small spindle shaped cells, situated between brown adipocytes and characterized by a high nuclear-cytoplasmic ratio, the scarcity of organelles, and the absence of lipid inclusions. Protoadipocytes resembled interstitial cells except that they contained a few tiny lipid droplets in their cytoplasm. Preadipocytes had a larger cytoplasm enclosing many mitochondria and lipid droplets; the smooth endoplasmic reticulum was well developed surrounding the lipid droplets, and was closely associated with the mitochondria. Preadipocytes had the typical structure of growing cells, developing long cytoplasmic processes between and around blood capillaries. Mature brown adipocytes represented the final stage of differentiation. Almost all their cellular volume was occupied by lipid droplets and numerous mitochondria with very dense cristae. Brown adipocytes were also characterized by a tight association with blood capillaries, as expected from metabolically active cells requiring oxygen and substrates. These observations provide direct ultrastructural evidence for a progressive differentiation of interstitial cells into brown adipocytes with a continuum of intermediate cellular types.  相似文献   

8.
9.
Epithelial homeostasis in the posterior midgut of Drosophila is maintained by multipotent intestinal stem cells (ISCs). ISCs self-renew and produce enteroblasts (EBs) that differentiate into either enterocytes (ECs) or enteroendocrine cells (EEs) in response to differential Notch (N) activation. Various environmental and growth signals dynamically regulate ISC activity, but their integration with differentiation cues in the ISC lineage remains unclear. Here we identify Notch-mediated repression of Tuberous Sclerosis Complex 2 (TSC2) in EBs as a required step in the commitment of EBs into the EC fate. The TSC1/2 complex inhibits TOR signaling, acting as a tumor suppressor in vertebrates and regulating cell growth. We find that TSC2 is expressed highly in ISCs, where it maintains stem cell identity, and that N-mediated repression of TSC2 in EBs is required and sufficient to promote EC differentiation. Regulation of TSC/TOR activity by N signaling thus emerges as critical for maintenance and differentiation in somatic stem cell lineages.  相似文献   

10.
11.
Metabolism, is a transversal hot research topic in different areas, resulting in the integration of cellular needs with external cues, involving a highly coordinated set of activities in which nutrients are converted into building blocks for macromolecules, energy currencies and biomass. Importantly, cells can adjust different metabolic pathways defining its cellular identity. Both cancer cell and embryonic stem cells share the common hallmark of high proliferative ability but while the first represent a huge social-economic burden the second symbolize a huge promise. Importantly, research on both fields points out that stem cells share common metabolic strategies with cancer cells to maintain their identity as well as proliferative capability and, vice versa cancer cells also share common strategies regarding pluripotent markers. Moreover, the Warburg effect can be found in highly proliferative non-cancer stem cells as well as in embryonic stem cells that are primed towards differentiation, while a bivalent metabolism is characteristic of embryonic stem cells that are in a true naïve pluripotent state and cancer stem cells can also range from glycolysis to oxidative phosphorylation. Therefore, this review aims to highlight major metabolic similarities between cancer cells and embryonic stem cells demonstrating that they have similar strategies in both signaling pathways regulation as well as metabolic profiles while focusing on key metabolites.  相似文献   

12.
13.
Stem cell markers are utilized to isolate or identify stem cells. So far, many stem-cell-specific markers have been described, although some of them turned out to be not as specific as it was originally proposed. In this study, we sought to search for a specific stem cell marker that would be phenotypically helpful, characteristically specific, economically affordable and easy to use. Because organelles are one of the major characteristics of eukaryotic cells, we asked the question of whether organelle characteristics might be a useful tool for stem cell characterization. We studied distribution and characteristics of the endoplasmic reticulum, the mitochondria and the Golgi apparatus in human dental-pulp-derived mesenchymal stem cells before and during osteogenic differentiation. Although it was not possible to find a useful macromolecular marker for stem cell characterization, we found that during osteogenic differentiation, the stem cells changed their Golgi characteristics and displayed a unique in vivo pattern. We analysed these unique Golgi structures and proposed a potential osteogenic differentiation marker for human dental-pulp-derived mesenchymal stem cells. This pattern may be used in the evaluation of osteogenic differentiation.  相似文献   

14.
Stem cells are unspecialized cells that can self renew indefinitely and differentiate into several somatic cells given the correct environmental cues. In the stem cell niche, stem cell-extracellular matrix (ECM) interactions are crucial for different cellular functions, such as adhesion, proliferation, and differentiation. Recently, in addition to chemical surface modifications, the importance of nanometric scale surface topography and roughness of biomaterials has increasingly becoming recognized as a crucial factor for cell survival and host tissue acceptance in synthetic ECMs. This review describes the influence of nanotopography on stem cell phenotypes.  相似文献   

15.
16.
Defining the identity of embryonic stem (ES) cells in quantitative molecular terms is a prerequisite to understanding their functional characteristics. Little is known about the role of microRNAs (miRNAs) in the regulation of ES cell identity. Statistical analysis of miRNA expression revealed unique expression signatures that could definitively classify mouse ES (mES), embryoid bodies (mEB), and somatic tissues. Analysis of these data sets also provides further confirmation of the nonrestrictive expression of miRNAs during murine development. Using combined genome-wide expression analyses of both miRNAs and mRNAs, we observed both negative and positive correlations in gene expression between miRNAs and their predicted targets. ES-specific miRNAs were positively correlated with their predicted targets, suggesting that mES-specific miRNAs may have a different role or mechanism in regulating their targets in mES maintenance or differentiation. The concept of cellular identity has changed with technology; this study redefines cellular identity by a generic statistical method of known dimension.  相似文献   

17.
Human stromal stem cell populations reside in different tissues and anatomical sites, however a critical question related to their efficient use in regenerative medicine is whether they exhibit equivalent biological properties. Here, we compared cellular and molecular characteristics of stromal stem cells derived from the bone marrow, at different body sites (iliac crest, sternum, and vertebrae) and other tissues (dental pulp and colon). In particular, we investigated whether homeobox genes of the HOX and TALE subfamilies might provide suitable markers to identify distinct stromal cell populations, as HOX proteins control cell positional identity and, together with their co‐factors TALE, are involved in orchestrating differentiation of adult tissues. Our results show that stromal populations from different sources, although immunophenotypically similar, display distinct HOX and TALE signatures, as well as different growth and differentiation abilities. Stromal stem cells from different tissues are characterized by specific HOX profiles, differing in the number and type of active genes, as well as in their level of expression. Conversely, bone marrow‐derived cell populations can be essentially distinguished for the expression levels of specific HOX members, strongly suggesting that quantitative differences in HOX activity may be crucial. Taken together, our data indicate that the HOX and TALE profiles provide positional, embryological and hierarchical identity of human stromal stem cells. Furthermore, our data suggest that cell populations derived from different body sites may not represent equivalent cell sources for cell‐based therapeutical strategies for regeneration and repair of specific tissues. J. Cell. Physiol. 228: 879–889, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
《Organogenesis》2013,9(1):37-47
The identity and functionality of eukaryotic cells is defined not just by their genomic sequence which remains constant between cell types, but by their gene expression profiles governed by epigenetic mechanisms. Epigenetic controls maintain and change the chromatin state throughout development, as exemplified by the setting up of cellular memory for the regulation and maintenance of homeotic genes in proliferating progenitors during embryonic development. Higher order chromatin structure in reversibly arrested adult stem cells also involves epigenetic regulation and in this review we highlight common trends governing chromatin states, focusing on quiescence and differentiation during myogenesis. Together, these diverse developmental modules reveal the dynamic nature of chromatin regulation providing fresh insights into the role of epigenetic mechanisms in potentiating development and differentiation.  相似文献   

19.
20.
Suzuki N  Furusawa C  Kaneko K 《PloS one》2011,6(11):e27232
The lack of understanding of stem cell differentiation and proliferation is a fundamental problem in developmental biology. Although gene regulatory networks (GRNs) for stem cell differentiation have been partially identified, the nature of differentiation dynamics and their regulation leading to robust development remain unclear. Herein, using a dynamical system modeling cell approach, we performed simulations of the developmental process using all possible GRNs with a few genes, and screened GRNs that could generate cell type diversity through cell-cell interactions. We found that model stem cells that both proliferated and differentiated always exhibited oscillatory expression dynamics, and the differentiation frequency of such stem cells was regulated, resulting in a robust number distribution. Moreover, we uncovered the common regulatory motifs for stem cell differentiation, in which a combination of regulatory motifs that generated oscillatory expression dynamics and stabilized distinct cellular states played an essential role. These findings may explain the recently observed heterogeneity and dynamic equilibrium in cellular states of stem cells, and can be used to predict regulatory networks responsible for differentiation in stem cell systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号