首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Chromosome four of Drosophila melanogaster, known as the dot chromosome, is largely heterochromatic, as shown by immunofluorescent staining with antibodies to heterochromatin protein 1 (HP1) and histone H3K9me. In contrast, the absence of HP1 and H3K9me from the dot chromosome in D. virilis suggests that this region is euchromatic. D. virilis diverged from D. melanogaster 40 to 60 million years ago.

Results

Here we describe finished sequencing and analysis of 11 fosmids hybridizing to the dot chromosome of D. virilis (372,650 base-pairs) and seven fosmids from major euchromatic chromosome arms (273,110 base-pairs). Most genes from the dot chromosome of D. melanogaster remain on the dot chromosome in D. virilis, but many inversions have occurred. The dot chromosomes of both species are similar to the major chromosome arms in gene density and coding density, but the dot chromosome genes of both species have larger introns. The D. virilis dot chromosome fosmids have a high repeat density (22.8%), similar to homologous regions of D. melanogaster (26.5%). There are, however, major differences in the representation of repetitive elements. Remnants of DNA transposons make up only 6.3% of the D. virilis dot chromosome fosmids, but 18.4% of the homologous regions from D. melanogaster; DINE-1 and 1360 elements are particularly enriched in D. melanogaster. Euchromatic domains on the major chromosomes in both species have very few DNA transposons (less than 0.4 %).

Conclusion

Combining these results with recent findings about RNAi, we suggest that specific repetitive elements, as well as density, play a role in determining higher-order chromatin packaging.  相似文献   

2.
3.
In the Saccharomyces cerevisiae yeasts, the DOT1 gene product provides methylation of lysine 79 (K79) of histone H3 and the SET2 gene product provides the methylation of lysine 36 (K36) of the same histone. We determined that the dot1 and set2 mutants suppress the UV-induced mutagenesis to an equally high degree. The dot1 mutation demonstrated statistically higher sensitivity to the low doses of MMC than the wild type strain. The analysis of the interaction between the dot1 and rad52 mutations revealed a considerable level of spontaneous cell death in the double dot1 rad52 mutant. We observed strong suppression of the gamma-induced mutagenesis in the set2 mutant. We determined that the dot1 and set2 mutations decrease the spontaneous mutagenesis rate in both single and double mutants. The epistatic interaction between the dot1 and set2 mutations and almost similar sensitivity of the corresponding mutants to the different types of DNA damage allow one to conclude that both genes are involved in the control of the same DNA repair pathways, the homologous-recombination-based and the postreplicative DNA repair.  相似文献   

4.
The karyotype of Drosophila nasutoides reveals a very large autosome pair at the metaphase plate. The application of the C-banding technique shows that this chromosome is almost entirely heterochromatic and an isochromosome (Cordeiro et al., 1975). Examination of the DNA isolated from purified nuclei of D. nasutoides in neutral CsCl gradients reveals four major satellites. As much as 60% of the total DNA appears as satellites in the DNA from larval brains. The buoyant densities of the four satellites, designated as I through IV in the order of descending density, are 1.687, 1.682, 1.669 and 1.665 g/cm3, respectively. All four satellites show strand separations in alkaline CsCl gradients with the least separation in satellite III. Thermal denaturation studies with purified native satellites show that satellites I and IV consist of repeats of identical sequences, whereas satellites II and III show a large sequence variation between repeating units. As much as 10 to 24% base-pair mis-matching is observed in the reassociated satellite II. The sequence complexities obtained from DNA reassociation kinetics data are 5, 103, 2.3 × 106 and 46 nucleotide pairs for the satellites I, II, III and IV, respectively. The complexity of satellite III is almost as large as that of Escherichia coli, when the reassociation rate is corrected according to the amount of mis-matching in this satellite. All four satellite sequences are localized in one chromosome (dot chromosome) according to in situ hybridizations to polytene chromosomes. The large heterochromatic chromosome seen at the metaphase plate appears as the dot chromosome after polytenization. Therefore, the large heterochromatic chromosome contains all four satellite DNA components.  相似文献   

5.
To maintain genomic integrity cells have to respond properly to a variety of exogenous and endogenous factors that produce genome injuries and interfere with DNA replication. DNA integrity checkpoints coordinate this response by slowing cell cycle progression to provide time for the cell to repair the damage, stabilizing replication forks and stimulating DNA repair to restore the original DNA sequence and structure. In addition, there are also mechanisms of damage tolerance, such as translesion synthesis (TLS), which are important for survival after DNA damage. TLS allows replication to continue without removing the damage, but results in a higher frequency of mutagenesis. Here, we investigate the functional contribution of the Dot1 histone methyltransferase and the Rad53 checkpoint kinase to TLS regulation in Saccharomyces cerevisiae. We demonstrate that the Dot1-dependent status of H3K79 methylation modulates the resistance to the alkylating agent MMS, which depends on PCNA ubiquitylation at lysine 164. Strikingkly, either the absence of DOT1, which prevents full activation of Rad53, or the expression of an HA-tagged version of RAD53, which produces low amounts of the kinase, confer increased MMS resistance. However, the dot1Δ rad53-HA double mutant is hypersensitive to MMS and shows barely detectable amounts of activated kinase. Furthermore, moderate overexpression of RAD53 partially suppresses the MMS resistance of dot1Δ. In addition, we show that MMS-treated dot1Δ and rad53-HA cells display increased number of chromosome-associated Rev1 foci. We propose that threshold levels of Rad53 activity exquisitely modulate the tolerance to alkylating damage at least by controlling the abundance of the key TLS factor Rev1 bound to chromatin.  相似文献   

6.
The ibeA gene, one of the important invasion-associated genes in neonatal meningitis Escherichia coli (NMEC), has been recently detected in avian pathogenic E. coli (APEC). Thus, it is necessary to close monitor the possible contamination of the poultry farms and its products to people. Here, a dot blot method for detecting the ibeA gene in E. coli was developed and validated. For the present study, probe sequence was designed and optimized for the specificity of dot blot. A 342-bp conserved fragment of ibeA gene was selected and labeled with digoxigenin (DIG)-dUTP according to the manufacturer??s guidelines, which indicated that this probe hybridizes with ibeA. In our established method, the bacteria culture samples were directly spotted on the membrane, following simple lyses on the membrane. Hence, the extraction of genomic DNA is not required, which reduces the workload and shortens the time. Furthermore, this assay was very sensitive, which could detect as few as 2.5?×?103?CFU bacteria. The diagnostic reliability of this dot blot was evaluated on 467 APEC bacteria samples by using PCR analysis. Both methods showed that the result was in complete concordance. The dot blot assay was proved to be a simple, rapid, highly accurate, and cost-effective method to identify invasion-associated genes ibeA, which could be applied for initial screening of a large number of clinical samples or direct detection of bacteria culture.  相似文献   

7.
Genetic transformation of bacteria harboring multiple Restriction-Modification (R-M) systems is often difficult using conventional methods. Here, we describe a mimicking-of-DNA-methylation-patterns (MoDMP) pipeline to address this problem in three difficult-to-transform bacterial strains. Twenty-four putative DNA methyltransferases (MTases) from these difficult-to-transform strains were cloned and expressed in an Escherichia coli strain lacking all of the known R-M systems and orphan MTases. Thirteen of these MTases exhibited DNA modification activity in Southwestern dot blot or Liquid Chromatography–Mass Spectrometry (LC–MS) assays. The active MTase genes were assembled into three operons using the Saccharomyces cerevisiae DNA assembler and were co-expressed in the E. coli strain lacking known R-M systems and orphan MTases. Thereafter, results from the dot blot and restriction enzyme digestion assays indicated that the DNA methylation patterns of the difficult-to-transform strains are mimicked in these E. coli hosts. The transformation of the Gram-positive Bacillus amyloliquefaciens TA208 and B. cereus ATCC 10987 strains with the shuttle plasmids prepared from MoDMP hosts showed increased efficiencies (up to four orders of magnitude) compared to those using the plasmids prepared from the E. coli strain lacking known R-M systems and orphan MTases or its parental strain. Additionally, the gene coding for uracil phosphoribosyltransferase (upp) was directly inactivated using non-replicative plasmids prepared from the MoDMP host in B. amyloliquefaciens TA208. Moreover, the Gram-negative chemoautotrophic Nitrobacter hamburgensis strain X14 was transformed and expressed Green Fluorescent Protein (GFP). Finally, the sequence specificities of active MTases were identified by restriction enzyme digestion, making the MoDMP system potentially useful for other strains. The effectiveness of the MoDMP pipeline in different bacterial groups suggests a universal potential. This pipeline could facilitate the functional genomics of the strains that are difficult to transform.  相似文献   

8.
9.
The aim of this study was to develop Prevotella intermedia-specific PCR primers based on the P. intermedia-specific DNA probe. The P. intermedia-specific DNA probe was screened by inverted dot blot hybridization and confirmed by Southern blot hybridization. The nucleotide sequences of the species-specific DNA probes were determined using a chain termination method. Southern blot analysis showed that the DNA probe, Pig27, detected only the genomic DNA of P. intermedia strains. PCR showed that the PCR primers, Pin-F1/Pin-R1, had species-specificity for P. intermedia. The detection limits of the PCR primer sets were 0.4 pg of the purified genomic DNA of P. intermedia ATCC 49046. These results suggest that the PCR primers, Pin-F1/Pin-R1, could be useful in the detection of P. intermedia as well as in the development of a PCR kit in epidemiological studies related to periodontal diseases.  相似文献   

10.
Inflammation associated reactive oxygen and nitrogen species (RONs), including peroxynitrite (ONOO) and nitric oxide (NO), create base lesions that potentially play a role in the toxicity and large genomic rearrangements associated with many malignancies. Little is known about the role of base excision repair (BER) in removing these endogenous DNA lesions. Here, we explore the role of X-ray repair cross-complementing group 1 (XRCC1) in attenuating RONs-induced genotoxicity. XRCC1 is a scaffold protein critical for BER for which polymorphisms modulate the risk of cancer. We exploited CHO and human glioblastoma cell lines engineered to express varied levels of BER proteins to study XRCC1. Cytotoxicity and the levels of DNA repair intermediates (single-strand breaks; SSB) were evaluated following exposure of the cells to the ONOO donor, SIN-1, and to gaseous NO. XRCC1 null cells were slightly more sensitive to SIN-1 than wild-type cells. We used small-scale bioreactors to expose cells to NO and found that XRCC1-deficient CHO cells were not sensitive. However, using a molecular beacon assay to test lesion removal in vitro, we found that XRCC1 facilitates AAG-initiated excision of two key NO-induced DNA lesions: 1,N6-ethenoadenine and hypoxanthine. Furthermore, overexpression of AAG rendered XRCC1-deficient cells sensitive to NO-induced DNA damage. These results show that AAG is a key glycosylase for BER of NO-induced DNA damage and that XRCC1's role in modulating sensitivity to RONs is dependent upon the cellular level of AAG. This demonstrates the importance of considering the expression of other components of the BER pathway when evaluating the impact of XRCC1 polymorphisms on cancer risk.  相似文献   

11.
We have isolated a covalent DNA-protein complex from bacteriophage φ29 particles. Polyacrylamide gel electrophoresis and tryptic peptide analysis showed that the protein present in the complex is very similar or identical to p3, an early induced protein essential for viral DNA replication.When the DNA-protein complex is treated with the restriction endonuclease EcoRI, the protein is specifically associated to the two terminal fragments, A and C. The protein is probably linked to the 5′ termini of the DNA since proteinase K-treated DNA is resistant to phosphorylation with polynucleotide kinase, even after treatment with alkaline phosphatase, while it is sensitive to exonuclease III. By electron microscopy the protein is visualized as a dot located at the ends of unit length DNA molecules.Mixed infection of Bacillus subtilis, at 42 °C, with ts2 mutants in cistrons 2 and 3 only produces ts 2 progeny. This finding suggests that an inactive protein p3 bound to the DNA of the ts 3 mutant is not replaced by a functional protein and, as a consequence, replication of the ts 3 DNA does not occur.  相似文献   

12.
13.
DNA was isolated from clover proliferation (CP) mycoplasmalike organism (MLO)-diseased periwinkle plants (Catharanthus roseus (L.) G. Don.) and cloned into pSP6 plasmid vectors. CP MLO-specific recombinant DNA clones were biotin labeled and used as probes in dot hybridization and restriction fragment length polymorphism analyses to study the genetic interrelatedness among CP MLO and other MLOs, including potato witches'-broom (PWB) MLO. Results from dot hybridization analyses indicated that both a Maryland strain of aster yellows and a California strain of aster yellows are distantly related to CP MLO. Elm yellows, paulownia witches'-broom, peanut witches'-broom, loofah witches'-broom, and sweet potato witches'-broom may be very distantly related, if at all, to CP MLO. A new Jersey strain of aster yellows MLO, tomato big bud MLO, clover phyllody MLO, beet leafhopper-transmitted virescence MLO, and ash yellows MLO are related to CP MLO, but PWB MLO is the most closely related. Similarity coefficients derived from restriction fragment length polymorphism analyses revealed that PWB and CP MLOs are closely related strains and thus provided direct evidence of their relatedness in contrast to reliance solely on biological characterization.  相似文献   

14.
Traditional morphological methods of Meloidogyne identification have been unsuccessful in distinguishing three South Carolina, USA Meloidogyne arenaria race 2 populations—Govan, Pelion, and Florence. These populations differ greatly in reproductive rate and aggressiveness on soybean hosts. Total genomic DNA from eggs of each population was digested with the restriction endonuclease Eco RI and Southern hybridization analyses were performed with single-copy and interspersed multi-copy cloned probes. Probes were isolated from a genomic library of Eco RI, M. arenaria DNA fragments cloned into pUC8. One probe, designated pE1.6A, when hybridized to Southern blots of M. arenaria genomic DNAs, displayed an interspersed repetitive pattern, and the RFLPs distinguished the Govan population from the Pelion and Florence populations. Another clone, pE6.0A, carrying moderately repeated sequences, distinguished the Pelion and Florence isolates. This communication demonstrates the utility of genomic RFLP analysis for distinguishing populations of the same race within the same species. To test the possible utility of these moderately repeated sequence probes for detecting the presence of nematode DNA in DNA samples from roots inoculated with varying numbers of nematodes, dot blot hybridization analyses were performed. It is possible to detect as few as 30 nematodes per root sample with these cloned probes.  相似文献   

15.
《Experimental mycology》1990,14(4):299-309
The size and organization of the genome of Bremia lactucae, a highly specialized fungal pathogen of lettuce, has been characterized using dot blot genomic reconstructions, reverse genomic blots, and genomic DNA reassociation kinetics. The haploid genome contains 5 × 107 bp of DNA and 65% of the nuclear DNA is repeated. Low copy sequences are interspersed with repeated sequences in a short-period interspersion pattern. This pattern of genome organization is different to that described for other fungi. Although most fungi have been shown to contain some form of repetitive DNA other than the ribosomal repeat, the high percentage of repetitive DNA and the interspersion of low copy and repeated sequences are atypical of fungi characterized previously.  相似文献   

16.
Conde F  San-Segundo PA 《Genetics》2008,179(3):1197-1210
Maintenance of genomic integrity relies on a proper response to DNA injuries integrated by the DNA damage checkpoint; histone modifications play an important role in this response. Dot1 methylates lysine 79 of histone H3. In Saccharomyces cerevisiae, Dot1 is required for the meiotic recombination checkpoint as well as for chromatin silencing and the G(1)/S and intra-S DNA damage checkpoints in vegetative cells. Here, we report the analysis of the function of Dot1 in the response to alkylating damage. Unexpectedly, deletion of DOT1 results in increased resistance to the alkylating agent methyl methanesulfonate (MMS). This phenotype is independent of the dot1 silencing defect and does not result from reduced levels of DNA damage. Deletion of DOT1 partially or totally suppresses the MMS sensitivity of various DNA repair mutants (rad52, rad54, yku80, rad1, rad14, apn1, rad5, rad30). However, the rev1 dot1 and rev3 dot1 mutants show enhanced MMS sensitivity and dot1 does not attenuate the MMS sensitivity of rad52 rev3 or rad52 rev1. In addition, Rev3-dependent MMS-induced mutagenesis is increased in dot1 cells. We propose that Dot1 inhibits translesion synthesis (TLS) by Polzeta/Rev1 and that the MMS resistance observed in the dot1 mutant results from the enhanced TLS activity.  相似文献   

17.
Exposure of Vibrio harveyi (strain VH1114) to V. harveyi siphovirus-like phage 1 (VHS1) resulted in the production of a low percentage of lysogenized clones of variable stability. These were retrieved most easily as small colonies within dot plaques. Analysis revealed that VHS1 prophage was most likely carried by VH1114 as an episome rather than integrated into the host chromosome. In the late exponential growth phase, lysogenized VH1114 continuously produced VHS1 but also gave rise to a large number of cured progeny. The absence of phage DNA in the cured progeny was confirmed by the absence of VHS1 DNA in Southern blot and PCR assays. Curiously, these very stable, cured subclones did not show the parental phenotype of clear plaques with VHS1 but instead showed turbid plaques, both in overlaid lawns and in dot plaque assays. This phenotypic difference from the original parental isolate suggested that transient lysogeny by VHS1 had resulted in a stable genetic change in the cured clones. Such clones may be called pseudolysogens (i.e., false lysogens), since they have undergone transient lysogeny and have retained some resistance to full lytic phage development, despite the loss of viable or detectable prophage.  相似文献   

18.
Telomeres play a central role in human cancer, cardiovascular aging and possibly longevity. However, present methods to measure telomere length are fraught with shortcomings that limit their use. Here, we describe a novel method to measure the relative telomere DNA content by dot blot analysis. In each dot, the DNA content is measured by a DNA stain (Dx) and the telomeric DNA content is measured with a telomeric probe (T). The T normalized for Dx (T/Dx) of each dot is a measure of telomere content. The method requires ~20 ng of DNA per assay. Moreover, the T/Dx data are highly correlated linearly with mean telomere lengths derived from Southern blots of the terminal restriction fragments (r > 0.96, P < 0.0001). The method is also simple to use, has a relatively low interassay coefficient of variation (<6%), retains its precision in moderately degraded DNA and can be forged for high throughput analysis. The method might help researchers and clinicians alike in understanding risks for and extent of human diseases.  相似文献   

19.
Nicotiana tabacum (2n=48) is a natural amphidiploid with component genomes S and T. We used non-radioactive in situ hybridization to provide physical chromosome markers for N. tabacum, and to determine the extant species most similar to the S and T genomes. Chromosomes of the S genome hybridized strongly to biotinylated total DNA from N. sylvestris, and showed the same physical localization of a tandemly repeated DNA sequence, HRS 60.1, confirming the close relationship between the S genome and N. sylvesfris. Results of dot blot and in situ hybridizations of N. tabacum DNA to biotinylated total genomic DNA from N. tomentosiformis and N. otophora suggested that the T genome may derive from an introgressive hybrid between these two species. Moreover, a comparison of nucleolus-organizing chromosomes revealed that the nucleolus organizer region (NOR) most strongly expressed in N. tabacum had a very similar counterpart in N. otophora. Three different N. tabacum genotypes each had up to 9 homozygous translocations between chromosomes of the S and T genomes. Such translocations, which were either unilateral or reciprocal, demonstrate that intergenomic transfer of DNA has occurred in the amphidiploid, possibly accounting for some results of previous genetic and molecular analyses. Molecular cytogenetics of N. tabacum has identified new chromosome markers, providing a basis for physical gene mapping and showing that the amphidiploid genome has diverged structurally from its ancestral components.  相似文献   

20.
《Biologicals》2001,29(2):123-132
BBG2Na, a well-defined recombinant protein produced in Escherichia coli, is a promising human respiratory syncytial virus subunit vaccine candidate. This study describes the quantification of residual DNA in large scale batches used in phase I to III clinical trials. Two different analytical methods were developed and applied on five different final bulks of Drug Substance and their associated in process control samples, namely a chemiluminescent hybridisation assay and the total DNA Threshold™ System assay. These two complementary methods demonstrated the clearance of residual DNA during the downstream purification process. The amount of residual DNA found in the final bulks was below 20 pg of DNA per 300 μg BBG2Na, the highest tested clinical dose of antigen. This is very low level of residual DNA for a recombinant subunit vaccine produced in a bacteria and contribute to make for BBG2Na a well-characterised biopharmaceutical. This study also provides data concerning the validation of the hybridisation dot blot assay and the total DNA Thresholdassay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号