首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibrolase is a non-hemorrhagic zinc metalloproteinase found in southern copperhead snake (Agkistrodon contortrix contortrix) venom that acts directly on fibrin clots and does not require plasminogen or any other blood-borne intermediate for activity. Chimeras of fibrolase with RGD peptides conferring antiplatelet activity have been synthesized covalently, but we describe a simpler, cheaper and less toxic method, using site-directed mutagensis. Fibrolase variants that constitute the arginine-glycine-aspartic acid (Arg–Gly–Asp, RGD) motif were constructed using site-directed mutagenesis. Chimeric genes of fibrolase were expressed in Escherichia coli to obtain the bifunctional chimeric molecule of fibrolase that can inhibit platelet aggregation. After refolding and purification, platelet-targeted thrombolysis and antiplatelet aggregation of the target chimeric protein were determined. The mutant RGD-F2, using the GPRGDWRMLG peptide to replace the TSVSHD sequence between sites 69 and 72, not only had almost the same catalytic ability as wild-type fibrolase but also a strong ability to inhibit platelet aggregation.  相似文献   

2.
A fibrinolytic enzyme present in Agkistrodon contortrix contortrix (southern copperhead) venom has been purified by combination of CM-cellulose chromatography, molecular sieve chromatography on Sephadex G-100, p-aminobenzamidine-agarose affinity chromatography, and DEAE-cellulose chromatography. The enzyme, fibrolase, has a molecular weight of 23,000-24,000 and an isoelectric point of pH 6.8. It is composed of approximately 200 amino acids, possesses a blocked NH2-terminus and contains little or no carbohydrate. The enzyme shows no activity against a series of chromogenic p-nitroanilide substrates and is not inhibited by diisopropylfluorophosphate, soybean trypsin inhibitor, Trasylol, or p-chloromercuribenzoate. However, the enzyme is a metalloproteinase since it is inhibited by EDTA, o-phenanthroline and tetraethylenepentamine (a specific zinc chelator). Metal analysis revealed 1 mol of zinc/mol of protein. Study of cleavage site preference of the fibrinolytic enzyme using the oxidized B chain of insulin revealed that specificity is similar to other snake venom metalloproteinases with cleavage primarily directed to an X-Leu bond. Interestingly, unlike some other venom fibrinolytic metalloproteinases, fibrolase exhibits little if any hemorrhagic activity. The enzyme exhibits direct fibrinolytic activity and does not activate plasminogen. In vitro studies revealed that fibrolase dissolves clots made either from purified fibrinogen or from whole blood.  相似文献   

3.
蛇毒纤溶酶Alfimeprase在大肠杆菌中的可溶表达和纯化   总被引:4,自引:1,他引:3  
Alfimeprase是Fibrolase的突变体,是一种蛇毒纤溶酶,有纤溶活性而无出血性。根据Alfimeprase的氨基酸序列和大肠杆菌密码子偏爱性,利用PCR的方法合成Alfimeprase DNA序列,分别融合在NusA和MBP的C端,与分子伴侣FkpA在大肠杆菌Origami B(DE3)中共表达,融合蛋白NusA/Alfimeprase以部分可溶的形式存在,可溶部分占上清总蛋白的25%左右,通过镍柱亲合层析纯化和肠激酶切割得到具有纤溶活性的重组蛋白Alfimeprase。本研究是首次报道在大肠杆菌中可溶表达Alfimeprase,为以后深入研究其功能及应用奠定了基础。  相似文献   

4.
The complete amino acid sequence of fibrolase, a fibrinolytic enzyme from southern copperhead (Agkistrodon contortrix contortrix) venom, has been determined. This is the first report of the sequence of a direct-acting, nonhemorrhagic fibrinolytic enzyme found in snake venom. The majority of the sequence was established by automated Edman degradation of overlapping peptides generated by a variety of selective cleavage procedures. The amino-terminus is blocked by a cyclized glutamine (pyroglutamic acid) residue, and the sequence of this region of the molecule was determined by mass spectrometry. Fibrolase is composed of 203 residues in a single polypeptide chain with a molecular weight of 22,891, as determined by the sequence. Its sequence is homologous to the sequence of the hemorrhagic toxin Ht-d of Crotalus atrox venom and with the sequences of two metalloproteinases from Trimeresurus flavoviridis venom. Microheterogeneity in the sequence was found at both the amino-terminus and at residues 189 and 192. All six cysteine residues in fibrolase are involved in disulfide bonds. A disulfide bond between cysteine-118 and cysteine-198 has been established and bonds between cysteines-158/165 and between cysteines-160/192 are inferred from the homology to Ht-d. Secondary structure prediction reveals a very low percentage of alpha-helix (4%), but much greater beta-structure (39.5%). Analysis of the sequence reveals the absence of asparagine-linked glycosylation sites defined by the consensus sequence: asparagine-X-serine/threonine.  相似文献   

5.
Halysase, a hemorrhagic metalloprotease, has an apparent molecular weight of 66kDa and belongs to the class P-III snake venom metalloprotease. Class P-III snake venom metalloproteases have multifunctional domains including a protease domain and a disintegrin-like domain. Halysase was able to preferentially hydrolyze the alpha-chain of fibrinogen. Proteolytic activity of the enzyme was completely inhibited by metal chelating agents but not by other typical protease inhibitors. The enzyme principally cleaves X-Leu, X-Tyr, X-Phe, and X-Ala peptide bonds of the oxidized insulin B-chain. Halysase strongly suppresses collagen-induced human platelet aggregation in a dose-dependent manner. Apohalysase that is devoid of its metalloprotease activity was also able to inhibit the platelet aggregation to a certain extent. Experimental evidence clearly indicates that each of the two distinct domains of halysase, the metalloprotease and the disintegrin-like domains, plays its characteristic role to inhibit human platelet aggregation.  相似文献   

6.
Fibrolase is a non-hemorrhagic zinc metalloproteinase found in southern copperhead snake venom (Agkistrodon contortrix contortrix). It is capable of degrading fibrin clots that result from purified fibrinogen or blood plasma. The DNA of fibrolase was amplified by recursive PCR, and cloned into the pET25b(+) expression vector. The effect of co-expression of signalless versions of catalysts or molecular chaperones FkpA, Skp and DsbC in cytoplasm was examined. When co-expressed with DsbC, compared to the totally insoluble inclusion bodies of fibrolase expressed separately, more than 90 % of recombinant fibrolase was soluble, according to denaturing polyacrylamide gel electrophoresis analysis. We also determined that FkpA and Skp had no effects on the solubility of target protein when co-expressed with fibrolase in Escherichia coli. Fibrolase was successfully purified using metal ion affinity chromatography and hydrophobic chromatography, and a maximum yield of 20 mg/L fibrolase was obtained. Fibrinolytic activity of recombinant fibrolase was demonstrated using fibrin plate assays and fibrinogen hydrolysis.  相似文献   

7.
Influence of proteins from the Agkistrodon blomhoffii ussuriensis snake venom on platelet activation and aggregation was developed on different model systems in vitro. It was shown that novel disintegrin (Blomus-B) and phospholipase A2 (Blopholipase) from the venom, activated platelets and inhibited their aggregation. Fibrino(geno)lityc enzyme (Blomulyse) does not activate platelets and has no effect on their aggregation stimulated by collagen, but inhibit ADP and adrenalin-stimulated platelet aggregation. Thrombin-like enzyme (Ancistron-Bu) activates platelets but has no effect on their aggregation. Obtained proteins can be used under development of new antiplatelet agents and as instruments for detailed elaboration and deep investigation of processes which proceed with participation of platelets.  相似文献   

8.
In investigations aimed at characterizing snake venom blood clot-dissolving enzymes, we have developed a rapid two-step high-performance chromatography method for the isolation of these fibrinolytic enzymes from the venoms of Agkistrodon contortrix contortrix and Agkistrodon piscivorus conanti. The first step consisted of hydrophobic interaction chromatography on a propyl-aspartamide column. Fractions containing the fibrinolytic activity were then concentrated and applied to a hydroxylapatite column. The resulting preparation, assessed for purity by reverse-phase chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was homogeneous. The molecular weight of both venom fibrinolytic enzymes was approximately 23,000 and amino acid analysis, immunological cross-reaction, cyanogen bromide, and tryptic digestion indicate a significant degree of structural similarity. However, the general proteolytic activity of the A. p. conanti venom enzyme was significantly lower than the corresponding activity of the A. c. contortrix venom, whereas their fibrinolytic activities were quite similar.  相似文献   

9.
RGDS-尿激酶原嵌合体的构建与表达   总被引:6,自引:0,他引:6  
利用定点突变及DNA重组技术,构建了在尿激酶原K区C端的β发夹区插入了精氨酸-甘氨酸-天冬氨酸-丝氨酸〔RGDS〕片段的尿激酶原嵌合体基因,并利用昆虫杆状病毒表达系统通过感染Sf9细胞对野生型及嵌合体尿激酶原进行了高效表达,表达量分别为1200~1800IU/(106细胞·ml)和1800~2400IU/(106细胞·ml).经过CM-SepharoseFF离子交换层析、SephadexG-75凝胶过滤层析及超滤浓缩对野生型及突变型进行了部分纯化,并对其性质进行了初步研究.表明突变体尿激酶原保留了全部尿激酶原的纤溶酶原激活活性,并具有很强的抗血小板聚集活性.RGDS-尿激酶原嵌合体兼有溶栓及抗栓活性  相似文献   

10.
Snake venom proteases affecting hemostasis and thrombosis   总被引:24,自引:0,他引:24  
The structure and function of snake venom proteases are briefly reviewed by putting the focus on their effects on hemostasis and thrombosis and comparing with their mammalian counterparts. Up to date, more than 150 different proteases have been isolated and about one third of them structurally characterized. Those proteases are classified into serine proteases and metalloproteinases. A number of the serine proteases show fibrin(ogen)olytic (thrombin-like) activities, which are not susceptible to hirudin or heparin and perhaps to most endogenous serine protease inhibitors, and form abnormal fibrin clots. Some of them have kininogenase (kallikrein-like) activity releasing hypotensive bradykinin. A few venom serine proteases specifically activate coagulation factor V, protein C, plasminogen or platelets. The venom metalloproteinases, belonging to the metzincin family, generally show fibrin(ogen)olytic and extracellular matrix-degrading (hemorrhagic) activities. A few venom metalloproteinases show a unique substrate specificity toward coagulation factor X, platelet membrane receptors or von Willebrand factor. A number of the metalloproteinases have chimeric structures composed of several domains such as proteinase, disintegrin-like, Cys-rich and lectin-like domains. The disintegrin-like domain seems to facilitate the action of those metalloproteinases by interacting with platelet receptors. A more detailed analysis of snake venom proteases should find their usefulness for the medical and pharmacological applications in the field of thrombosis and hemostasis.  相似文献   

11.
Platelet aggregation inducer and inhibitor were isolated from Echis carinatus snake venom. The venom inducer caused aggregation of washed rabbit platelets which could be inhibited completely by heparin or hirudin. The venom inducer also inhibit both the reversibility of platelet aggregation induced by ADP and the disaggregating effect of prostaglandin E1 on the aggregation induced by collagen in the presence of heparin. The venom inhibitor decreased the platelet aggregation induced by collagen, thrombin, ionophore A23187, arachidonate, ADP and platelet-activating factor (PAF) with an IC50 of around 10 μg/ml. It did not inhibit the agglutination of formaldehyde-treated platelets induced by polylysine. In the presence of indomethacin or in ADP-refractory platelets or thrombin-degranulated platelets, the venom inhibitor further inhibited the collagen-induced aggregation. Fibrinogen antagonized competitively the inhibitory action of the venom inhibitor in collagen-induced aggregation. In chymotrypsin-treated platelets, the venom inhibitor abolished the aggregation induced by fibrinogen. It was concluded that the venom inducer caused platelet aggregation indirectly by the conversion of prothrombin to thrombin, while the venom inhibitor inhibited platelet aggregation by interfering with the interaction between fibrinogen and platelets.  相似文献   

12.
Bothropstoxin-II (Bthtx-II), an Asp-49 phospholipase A(2) (D-PLA(2)) isolated from Bothrops jararacussu snake venom is able to induce platelet aggregation in a concentration-dependent manner. This effect was not due to the release of ADP from platelets since the aggregation was not suppressed by ADP scavenger systems. PMSF and PPACK were unable to inhibit Bthtx-II-induced platelet aggregation. Thus, a thrombin-like proaggregating activity of Bthtx-II can be excluded as its mechanism of action. On the other hand, indomethacin at low concentrations inhibited more markedly the ATP-release reaction than the aggregation induced by Bthtx-II, indicating that generation of cyclooxigenase products is not the most important event for the platelet aggregation reaction. It was also found that staurosporine and genistein suppressed both platelet aggregation and ATP-release reactions, but not the platelet shape-change induced by Bthtx-II. Substances that either directly activates adenylyl cyclase enzyme (forskolin and PGE(1)) or cell-permeant increasing agents (dibutyril-cAMP) inhibited in a concentration-dependent fashion, the platelet aggregation effects induced by the protein. It is concluded that Bthtx-II induces platelet aggregation and secretion through multiple signal transduction pathways.  相似文献   

13.
BackgroundViperid snake venoms contain active components that interfere with hemostasis. We report a new P-I class snake venom metalloproteinase (SVMP), barnettlysin-I (Bar-I), isolated from the venom of Bothrops barnetti and evaluated its fibrinolytic and antithrombotic potential.MethodsBar-I was purified using a combination of molecular exclusion and cation-exchange chromatographies. We describe some biochemical features of Bar-I associated with its effects on hemostasis and platelet function.ResultsBar-I is a 23.386 kDa single-chain polypeptide with pI of 6.7. Its sequence (202 residues) shows high homology to other members of the SVMPs. The enzymatic activity on dimethylcasein (DMC) is inhibited by metalloproteinase inhibitors e.g. EDTA, and by α2-macroglobulin. Bar-I degrades fibrin and fibrinogen dose- and time-dependently by cleaving their α-chains. Furthermore, it hydrolyses plasma fibronectin but not laminin nor collagen type I. In vitro Bar-I dissolves fibrin clots made either from purified fibrinogen or from whole blood. In contrast to many other P-I SVMPs, Bar-I is devoid of hemorrhagic activity. Also, Bar-I dose- and time-dependently inhibits aggregation of washed human platelets induced by vWF plus ristocetin and collagen (IC50 = 1.3 and 3.2 μM, respectively), presumably Bar-I cleaves both vWF and GPIb. Thus, it effectively inhibits vWF-induced platelet aggregation. Moreover, this proteinase cleaves the collagen-binding α2-A domain (160 kDa) of α2β1-integrin. This explains why it additionally inhibits collagen-induced platelet activation.ConclusionA non-hemorrhagic but fibrinolytic metalloproteinase dissolves fibrin clots in vitro and impairs platelet function.General significanceThis study provides new opportunities for drug development of a fibrinolytic agent with antithrombotic effect.  相似文献   

14.
A plasminogen activator enzyme (LV-PA) from Lachesis muta muta venom was purified to homogeneity using gel filtration and anion exchange chromatography. SDS-PAGE under reducing conditions showed a single protein band with an Mr of 33,000 Da. It is an acidic glycoprotein which activates plasminogen to plasmin indirectly, functioning via prior formation of a molecular complex, known as plasminogen activator. The purified preparation catalyzes the hydrolysis of several p-nitroanilide peptide substrates containing Lys at the scissile bond. In contrast, no hydrolysis was detected on the synthetic substrates TAME and BAPNA, which contain arginine. By the use of the plasmin-specific chromogenic substrate Tos-Gly-Pro-Lys-pNA, the preparation had a plasmin-like activity of 0.68 U/mg, which was 35.8-fold higher than that of the crude venom from which it was prepared. In vitro, fibrin hydrolysis using LV-PA as plasminogen activator displayed more similarity with the effect produced by streptokinase (SK). SDS-PAGE (10%) analysis showed a 115-kDa complex formation after incubation of plasminogen with either LV-PA or SK. At a molar ratio of 50:1 (fibrinogen:enzyme), the preparation exhibited weakly fibrinogenolytic activity. However, LV-PA is distinguished from thrombin in that it does not clot fibrinogen. After incubation of LV-PA with platelet-rich plasma, the enzyme (2 microM) showed no effect on platelet aggregation induced by ADP, epinephrine, or collagen. Comparison of the N-terminal sequence of LV-PA with other snake venom plasminogen activators revealed that LV-PA exhibits a high degree of sequence identity with the TsVPA from Trimeresurus stejnegeri (90%) and with the Haly-PA from Agkistrodon halys (85%). LV-PA also has homology with other snake venom serine proteinases such as the thrombin-like/gyroxin analogue (38%) from bushmaster venom and with other coagulation serine proteases. The proteinase was readily inhibited by treatment with p-nitrophenyl p-guanidinebenzoate, p-aminobenzamidine, and phenylmethanesulfonyl fluoride but was not affected by metal chelators.  相似文献   

15.
Fibrino(geno)lytic enzymes from snake venoms have been identified as high quality therapeutic agents for treatment of blood clots and strokes. They act on fibrinogen and fibrin, leading to defibrinogenation of blood, lysis of fibrin, and a consequent decrease in blood viscosity. In this work, a fibrinolytic enzyme (ussurenase) from China Agkistrodon blomhoffii Ussurensis snake venom, was purified to homogeneity, identified as a stable 23,367.8 Da monomeric protein, and was identified as a new kind of snake venom metalloproteinase. Ussurenase reacts optimally with fibrin clots at pH 7.5-8.3 and a temperature of 33-41 degrees C. Although many fibrinolytic enzymes are known to be zinc-dependent, measurements from inductively coupled plasma-atomic emission spectroscopy (ICP-AES) reveal that ussurenase is a Ca2+-containing protein with a molar ratio of 1:1 ([Ca2+]:[enzyme]). Ca2+ is crucial to the fibrin clot hydrolysis by ussurenase but also plays an important role in maintaining the structural integrity of the enzyme. The addition of Ca2+ to the apoenzyme induces a conformational change making the environments surrounding the Trp residues of the enzyme more hydrophobic. The presence of Ca2+ also increases the structural stability of ussurenase, so that higher concentrations of the denaturant guanidine hydrochloride are required to denature the native ussurenase compared to the apo-form. UV absorption and CD spectroscopy experiments show that Ca2+ increases the thermostability and changes the secondary structure of ussurenase. All these data suggest that Ca2+ is crucial for the correct folding and activity of ussurenase.  相似文献   

16.
A novel non-hemorrhagic metalloproteinase, AHPM, was purified from the venom of Agkistrodon halys pallas by a combination of ion-exchange and gel filtration chromatography. AHPM is a dimeric glycoprotein with multiple pIs around pH 7.9 and has a molecular mass of 110 kDa with two blocked N-terminuses. Partial sequence of AHPM obtained by LC-MS/MS analysis together with its dimeric nature reveals that it is a P-IIIc snake venom metalloproteinase composed of metalloproteinase, disintegrin-like and cysteine-rich domains. AHPM has a conserved DECD sequence in the disintegrin-like domain. AHPM hydrolyzes casein and fibrinogen and also dissolves fibrin clots and the proteolytic activity is abolished by EDTA, but not by PMSF, suggesting that it is a metalloproteinase. The protease hydrolyzes rapidly the Aα-chain of fibrinogen followed by the Bβ-chain and does not cleave the γ-chain. AHPM contains endogenous Zn2+ and Ca2+ ions at a molar ratio of 1:1.9 and 1:4.2, respectively, and Zn2+ ions are essential for its proteolytic activity. AHPM inhibits collagen-and ADP-induced platelet aggregation with half maximal inhibitory concentrations of 200 ± 8 nM and 280 ± 10 nM, respectively. EDTA markedly attenuates the inhibition of ADP-induced platelet aggregation by AHPM, indicating that the fibrinogenolytic activity of AHPM is involved in its inhibition of ADP-induced platelet aggregation. AHPM is devoid of hemorrhagic activity when injected (up to 30 μg) subcutaneously into mice. AHPM is so far identified as first non-hemorrhagic P-IIIc SVMP which has both fibrinolytic and platelet aggregation-inhibition activities. The bifunctional enzyme may have a potential clinical application as a thrombolytic agent.  相似文献   

17.
Atrolysin A and jararhagin are class P-III snake venom metalloproteinases (SVMPs) with three distinct domains: a metalloproteinase, a disintegrin-like and a cysteine-rich. The metalloproteinase and the disintegrin-like domains of atrolysin A and jararhagin contain peptide sequences that interact with alpha2beta1 integrin and inhibit the platelet responses to collagen. Recently, the recombinant cysteine-rich domain of atrolysin A was shown to have similar effects, but the sequence(s) responsible for this is unknown. In this report, we demonstrate two complete peptide sequences from the homologous cysteine-rich domains of atrolysin A and jararhagin that inhibit both platelet aggregation by collagen and adhesion of alpha2-expressing K562 cells to this protein. In addition, the peptide effects on platelets do not seem to involve an inhibition of GPVI. These results identify, for the first time, sites in the cysteine-rich domain of SVMPs that inhibit cell responses to collagen and reveal the complexity of the potential biological effects of these enzymes with multifunctional domains.  相似文献   

18.
The primary structure of kaouthiagin, a metalloproteinase from the venom of the cobra snake Naja kaouthia which specifically cleaves human von Willebrand factor (VWF), was determined by amino acid sequencing. Kaouthiagin is composed of 401 amino acid residues and one Asn-linked sugar chain. The sequence is highly similar to those of high-molecular mass snake venom metalloproteinases from viperid and crotalid venoms comprised of metalloproteinase, disintegrin-like, and Cys-rich domains. The metalloproteinase domain had a zinc-binding motif (HEXXHXXGXXH), which is highly conserved in the metzincin family. Kaouthiagin had an HDCD sequence in the disintegrin-like domain and uniquely had an RGD sequence in the Cys-rich domain. Metalloproteinase-inactivated kaouthiagin had no effect on VWF-induced platelet aggregation but still had an inhibitory effect on the collagen-induced platelet aggregation with an IC(50) of 0.2 microM, suggesting the presence of disintegrin-like activity in kaouthiagin. To examine the effects of these HDCD and RGD sequences, we prepared synthetic peptides cyclized by an S-S linkage. Both the synthetic cyclized peptides from the disintegrin-like domain and from the Cys-rich domain) had an inhibitory effect on collagen-induced platelet aggregation with IC(50) values of approximately 90 and approximately 4.5 microM, respectively. The linear peptide (RAAKHDCDLPELC) and the cyclized peptide had little effect on collagen-induced platelet aggregation. These results suggest that kaouthiagin not only inhibits VWF-induced platelet aggregation by cleaving VWF but also disturbs the agonist-induced platelet aggregation by both the disintegrin-like domain and the RGD sequence in the Cys-rich domain. Furthermore, our results imply that the corresponding part of the Cys-rich domain in other snake venom metalloproteinases also has a synergistic disturbing effect on platelet aggregation, serving as a second disintegrin-like domain. This is the first report of an elapid venom metalloproteinase with two disintegrin-like sequences.  相似文献   

19.
Prourokinase (scu-PA),a thrombolytic agent,was inserted between Glyl 18 and Ilel 19 with foreign anti-thrombosis functional motif (Lys-Gly-Asp-Trp-motif) to construct a multi-functional chimeric molecule.The molecular model of a chimera was simulated and pre-dicted.The recombinant chimeric protein was expressed by the baculovirus-insect cell expression system and puri-fied by affinity chromatography.The physico-chemical characteristics of the chimeric molecule were assayed.The thrombolytic activity was determined to be 90000 IU/mg of fibrinolytic special activity by the fibrin-plate method.The anti-thrombosis activities were also assayed with IC50 of 9.6 μM by an inhibition test of ADP-induced platelet aggregation.  相似文献   

20.
Two metalloproteinases, a 24-kDa P-I EoVMP1 and a 56-kDa P-III EoVMP2, have recently been isolated from the venom of the West African saw-scaled viper Echis ocellatus. We now reveal a new 65-kDa haemorrhagic group P-III metalloproteinase which we have designated EoVMP3. The aim of this study was to determine whether these three snake venom metalloproteinases (SVMPs) affect platelets and blood coagulation. EoVMP1 had no effect on the aggregation of washed human platelets, whereas EoVMP2 inhibited collagen-induced platelet aggregation. In contrast, EoVMP3 did not inhibit the aggregation of platelets by collagen but instead activated platelets in the absence of any additional co-factors. All three SVMPs were capable of activating prothrombin to varying degrees and can therefore be described as procoagulants. EoVMP1, EoVMP2 and EoVMP3 share sequence identity with other members of the reprolysin family, but differ greatly in their effects on some of the components that control haemostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号