首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The nuclear factor (NF)-κB is a primary regulator of inflammatory responses and may be linked to pathology associated with obesity. We investigated the progression of NF-κB activity during a 12-week feeding period on a high-fat diet (HFD) or a low-fat diet (LFD) using NF-κB luciferase reporter mice. In vivo imaging of luciferase activity showed that NF-κB activity was higher in the HFD mice compared with LFD-fed mice. Thorax region of HFD females displayed fourfold higher activity compared with LFD females, while no such increase was evident in males. In male HFD mice, abdominal NF-κB activity was increased twofold compared with the LFD males, while females had unchanged NF-κB activity in the abdomen by HFD. HFD males, but not females, exhibited evident glucose intolerance during the study. In conclusion, HFD increased NF-κB activity in both female and male mice. However, HFD differentially increased activity in males and females. The moderate increase in abdomen of male mice may be linked to glucose intolerance.  相似文献   

3.
Diet-induced insulin resistance in mice lacking adiponectin/ACRP30   总被引:116,自引:0,他引:116  
Here we investigated the biological functions of adiponectin/ACRP30, a fat-derived hormone, by disrupting the gene that encodes it in mice. Adiponectin/ACRP30-knockout (KO) mice showed delayed clearance of free fatty acid in plasma, low levels of fatty-acid transport protein 1 (FATP-1) mRNA in muscle, high levels of tumor necrosis factor-alpha (TNF-alpha) mRNA in adipose tissue and high plasma TNF-alpha concentrations. The KO mice exhibited severe diet-induced insulin resistance with reduced insulin-receptor substrate 1 (IRS-1)-associated phosphatidylinositol 3 kinase (PI3-kinase) activity in muscle. Viral mediated adiponectin/ACRP30 expression in KO mice reversed the reduction of FATP-1 mRNA, the increase of adipose TNF-alpha mRNA and the diet-induced insulin resistance. In cultured myocytes, TNF-alpha decreased FATP-1 mRNA, IRS-1-associated PI3-kinase activity and glucose uptake, whereas adiponectin increased these parameters. Our results indicate that adiponectin/ACRP30 deficiency and high TNF-alpha levels in KO mice reduced muscle FATP-1 mRNA and IRS-1-mediated insulin signaling, resulting in severe diet-induced insulin resistance.  相似文献   

4.
Cardiovascular disease is characterized by enhanced oxidative stress in the vascular wall, heart, kidney, and brain. Epidemiological evidence suggests that antioxidants, including vitamins C and E, α-carotene, and β-carotene, may be therapeutic; however, interventional trials of antioxidants have provided mixed results, with some showing deleterious consequences. It is thus crucial that we consider the implications of trial design and execution, and further investigation of cellular pro-and antioxidant mechanisms is critical. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and mineralocorticoid receptor blockers reduce the generation of reactive oxygen species, in experimental models as well as in humans, and have demonstrated beneficial cardiovascular effects. Polyphenols and antioxidants contained in foods and beverages may also be cardioprotective. Recent studies suggest that the judicious development of antioxidant agents may provide an effective approach to quench oxidative stress in tissues and improve cardiovascular health.  相似文献   

5.
6.
Mice heterozygous for the elastin gene (ELN(+/-)) show unique cardiovascular properties, including increased blood pressure and smaller, thinner arteries with an increased number of lamellar units. Some of these properties are also observed in humans with supravalvular aortic stenosis, a disease caused by functional heterozygosity of the elastin gene. The arterial geometry in ELN(+/-) mice is contrary to the increased thickness that would be expected in an animal demonstrating hypertensive remodeling. To determine whether this is due to a decreased capability for cardiovascular remodeling or to a novel adaptation of the ELN(+/-) cardiovascular system, we increased blood pressure in adult ELN(+/+) and ELN(+/-) mice using the two-kidney, one-clip Goldblatt model of hypertension. Successfully clipped mice have a systolic pressure increase of at least 15 mmHg over sham-operated animals. ELN(+/+) and ELN(+/-)-clipped mice show significant increases over sham-operated mice in cardiac weight, arterial thickness, and arterial cross-sectional area with no changes in lamellar number. There are no significant differences in most mechanical properties with clipping in either genotype. These results indicate that ELN(+/+) and ELN(+/-) hearts and arteries remodel similarly in response to adult induced hypertension. Therefore, the cardiovascular properties of ELN(+/-) mice are likely due to developmental remodeling in response to altered hemodynamics and reduced elastin levels.  相似文献   

7.
Matrix metalloproteinase 19 (MMP-19) is a member of the MMP family of endopeptidases that, in contrast to most MMPs, is widely expressed in human tissues under normal quiescent conditions. MMP-19 has been found to be associated with ovulation and angiogenic processes and is deregulated in diverse pathological conditions such as rheumatoid arthritis and cancer. To gain further insights into the in vivo functions of this protease, we have generated mutant mice deficient in Mmp19. These mice are viable and fertile and do not display any obvious abnormalities. However, Mmp19-null mice develop a diet-induced obesity due to adipocyte hypertrophy and exhibit decreased susceptibility to skin tumors induced by chemical carcinogens. Based on these results, we suggest that this enzyme plays an in vivo role in some of the tissue remodeling events associated with adipogenesis, as well as in pathological processes such as tumor progression.  相似文献   

8.
A high saturated fat diet induces free cholesterol and phospholipid accumulation in the plasma of phospholipid transfer protein (Pltp)-deficient mice. In this study, we examined the atherogenic consequence of this phenomenon and investigated the possible mechanism(s). Pltp KO/Apoe KO mice that were fed a coconut oil-enriched high-fat diet (COD) for 7 weeks had higher plasma free cholesterol (149%), phospholipids (15%), and sphingomyelin (54%) than Apoe KO controls. In contrast to chow-fed animals, COD-fed Pltp KO/Apoe KO mice had the same atherosclerotic lesion size as that of Apoe KO mice. Similar to Pltp KO mice, plasma from COD-fed Pltp KO/Apoe KO mice contained VLDL/LDL-sized lamellar particles. Bile measurement indicated that COD-fed Pltp KO mice have 33% less hepatic cholesterol output than controls. In conclusion, COD-fed, Pltp-deficient mice are no longer protected from atherosclerosis and have impaired biliary lipid secretion, which is associated with free cholesterol and phospholipid accumulation.  相似文献   

9.
With the growth of genetic engineering, mice have become common as models of human diseases, which in turn has stimulated the development of techniques to monitor and image the murine cardiovascular system. Invasive methods are often more quantitative, but noninvasive methods are preferred when measurements must be repeated serially on living animals during development or in response to pharmacological or surgical interventions. Because of the small size and high heart rates in mice, high spatial and temporal resolutions are required to preserve signal fidelity. Monitoring of body temperature and the electrocardiogram is essential when animals must be anesthetized for a measurement or other procedure. Several other groups have developed cardiovascular imaging modalities suitable for murine applications, and ultrasound is the most widely used. Our group has developed and applied high-resolution Doppler probes and signal processing for measuring blood velocity in the heart and peripheral vessels of anesthetized mice noninvasively. We can measure cardiac filling and ejection velocities as indices of systolic and diastolic ventricular function and for timing of cardiac events; velocity pulse arrival times for determining pulse-wave velocity and arterial stiffness; peripheral velocity waveforms as indices of arterial resistance, compliance, and wave reflections; stenotic velocities for estimation of pressure drop and detection of vorticity; and tail artery velocity for determining systolic and diastolic blood pressure using a pressure cuff. These noninvasive methods are convenient and easy to apply and have been used to detect and evaluate numerous cardiovascular phenotypes in mutant mice.  相似文献   

10.
11.
Lead is a ubiquitous environmental toxin that is capable of causing numerous acute and chronic illnesses. Population studies have demonstrated a link between lead exposure and subsequent development of hypertension (HTN) and cardiovascular disease. In vivo and in vitro studies have shown that chronic lead exposure causes HTN and cardiovascular disease by promoting oxidative stress, limiting nitric oxide availability, impairing nitric oxide signaling, augmenting adrenergic activity, increasing endothelin production, altering the renin-angiotensin system, raising vasoconstrictor prostaglandins, lowering vasodilator prostaglandins, promoting inflammation, disturbing vascular smooth muscle Ca(2+) signaling, diminishing endothelium-dependent vasorelaxation, and modifying the vascular response to vasoactive agonists. Moreover, lead has been shown to cause endothelial injury, impede endothelial repair, inhibit angiogenesis, reduce endothelial cell growth, suppress proteoglycan production, stimulate vascular smooth muscle cell proliferation and phenotypic transformation, reduce tissue plasminogen activator, and raise plasminogen activator inhibitor-1 production. Via these and other actions, lead exposure causes HTN and promotes arteriosclerosis, atherosclerosis, thrombosis, and cardiovascular disease. In conclusion, studies performed in experimental animals, isolated tissues, and cultured cells have provided compelling evidence that chronic exposure to low levels of lead can cause HTN, endothelial injury/dysfunction, arteriosclerosis, and cardiovascular disease. More importantly, these studies have elucidated the cellular and molecular mechanisms of lead's action on cardiovascular/renal systems, a task that is impossible to accomplish using clinical and epidemiological investigations alone.  相似文献   

12.
Levin提出饮食诱导肥胖(DIO)与饮食诱导肥胖抵抗(DIO-R)的概念后,其发生机制受到了广泛关注。现代研究认为脂肪组织除了能调节能量代谢外,还可以分泌多种细胞因子,如瘦素、脂联素、肿瘤坏死因子-α(TNF-α)和抵抗素等。在已发现的脂肪细胞因子中,瘦素、TNF-α和脂联素等与肥胖的发生密切关联。DIO大鼠血清瘦素水平比DIO-R大鼠高,DIO大鼠瘦素敏感性降低,发生了瘦素抵抗。DIO小鼠血浆脂联素水平比DIO-R小鼠低。DIO组TNF-α水平明显高于DIO-R组。  相似文献   

13.
Autonomic cardiovascular control was characterized in conscious, chronically catheterized mice by spectral analysis of arterial pressure (AP) and heart rate (HR) during autonomic blockade or baroreflex modulation of autonomic tone. Both spectra were similar to those obtained in humans, but at approximately 10x higher frequencies. The 1/f relation of the AP spectrum changed to a more shallow slope below 0.1-0.2 Hz. Coherence between AP and HR reached 0.5 or higher below 0.3-0.4 Hz and also above 2.5 Hz. Muscarinic blockade (atropine) or beta-adrenergic blockade (atenolol) did not significantly affect the AP spectrum. Atropine reduced HR variability at all frequencies, but this effect waned above 1 Hz. beta-Adrenergic blockade (atenolol) slightly enhanced the HR variability only above 1 Hz. alpha-Adrenergic blockade (prazosin) reduced AP variability between 0.05 and 3 Hz, most prominently at 0. 15-0.7 Hz. A shift of the autonomic nervous tone by a hypertensive stimulus (phenylephrine) enhanced, whereas a hypotensive stimulus (nitroprusside) depressed AP variability at 1-3 Hz; other frequency ranges of the AP spectrum were not affected except for a reduction below 0.4 Hz after nitroprusside. Variability of HR was enhanced after phenylephrine at all frequencies and reduced after nitroprusside. As with atropine, the reduction with nitroprusside waned above 1 Hz. In conclusion, in mice HR variability is dominated by parasympathetic tone at all frequencies, during both blockade and physiological modulation of autonomic tone. There is a limitation for further reduction but not for augmentation of HR variability from the resting state above 1 Hz. The impact of HR on AP variability in mice is confined to frequencies higher than 1 Hz. Limits between frequency ranges are proposed as 0.15 Hz between VLF (very low frequency range) and LF (low frequency range) and 1.5 Hz between LF and HF (high frequency range).  相似文献   

14.

Introduction  

Obesity is a major risk factor for the development of osteoarthritis in both weight-bearing and nonweight-bearing joints. The mechanisms by which obesity influences the structural or symptomatic features of osteoarthritis are not well understood, but may include systemic inflammation associated with increased adiposity. In this study, we examined biomechanical, neurobehavioral, inflammatory, and osteoarthritic changes in C57BL/6J mice fed a high-fat diet.  相似文献   

15.
16.
17.
18.
The effects of high-fat feeding on the development of obesity were evaluated in intercellular adhesion molecule-1 (ICAM-1) knockout and C57BL/6J (B6) male mice fed a high-fat diet for < or =50 days. Serum and tissues were collected at baseline and after 1, 11, and 50 days on the diet. After 11 days on the diet, ICAM-1-deficient, but not B6, mice developed fatty livers and showed a significant increase in inguinal fat pad weight. At day 50, ICAM-1-deficient mice weighed less, and their adiposity index and circulating leptin levels were significantly lower than those of B6 controls. To better understand the early differential response to the diet, liver gene expression was analyzed at three time points by use of Affymetrix GeneChips. In both strains, a similar pattern of gene expression was detected in response to the high-fat diet. However, sterol regulatory element-binding protein-1, apolipoprotein A4, and adipsin mRNAs were significantly induced in ICAM-1-deficient livers, suggesting that these genes and their associated pathways may be involved in the acute diet response observed in the knockout mice.  相似文献   

19.
20.
Experiments were performed in C57BL/6J male mice to determine the effects of acetylcholinesterase (AChE) inhibitor pyridostigmine bromide (PB) and stress on cardiovascular function, structure, and apoptosis. Mice were studied for seven days under the following conditions: Controls (osmotic minipump with saline), PB (10 mg/kg/day, minipumps), shaker stress (45 stressors/day, minipump with saline) and PB+Stress combination. AChE activity was significantly reduced in all PB-treated mice. PB caused no changes in 24-h mean arterial pressure (MAP) or heart rate (HR). Stress increased 24-h MAP on day 1 and 24-h HR on day 7 in both Stress and PB+Stress groups. A significant reduction in the aortic wall thickness/diameter ratio (P <0.05 vs. control) and slightly reduced relative heart weight were observed in the PB group. These effects were blunted by simultaneous stress exposure. Immunochemistry was used to stain for Bax and Bcl-2 (apoptosis markers). There was a four-fold increase in Bax/Bcl-2 ratio in the heart of PB and PB+Stress treated mice while an attenuation was observed in aortic endothelium. Results suggest that a relatively short-term continuous PB exposure may have adverse effects on the heart and blood vessels, independently of changes in MAP and HR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号