首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zinc fingers are small structured protein domains that require the coordination of zinc for a stable tertiary fold. Together with FYVE and PHD, the RING domain forms a distinct class of zinc-binding domains, where two zinc ions are ligated in a cross-braced manner, with the first and third pairs of ligands coordinating one zinc ion, while the second and fourth pairs ligate the other zinc ion. To investigate the relationship between the stability and dynamic behaviour of the domains and the stability of the metal-binding site, we studied metal exchange for the C4C4 RING domains of CNOT4 and the p44 subunit of TFIIH. We found that Zn(2+)-Cd(2+) exchange is different between the two metal-binding sites in the C4C4 RING domains of the two proteins. In order to understand the origins of these distinct exchange rates, we studied the backbone dynamics of both domains in the presence of zinc and of cadmium by NMR spectroscopy. The differential stability of the two metal-binding sites in the RING domains, as reflected by the different metal exchange rates, can be explained by a combination of accessibility and an electrostatic ion interaction model. A greater backbone flexibility for the p44 RING domain as compared to CNOT4 may be related to the distinct types of protein-protein interactions in which the two C4C4 RING domains are involved.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
B-box domains are a defining feature of the tripartite RBCC (RING, B-box, coiled-coil) or TRIM proteins, many of which are E3 ubiquitin ligases. However, little is known about the biological function of B-boxes. In some RBCC/TRIM proteins there is only a single B-box (type 2) domain, while others have both type 1 and type 2 B-box domains in tandem adjacent to their RING domain. These two types of B-boxes share little sequence similarity, except the presence of cysteine and histidine residues: eight in most B-box1 domains and seven in B-box2 domains. We report here the high-resolution solution structure of the first B-box1 domain (from the human RBCC protein, MID1) based on 670 nuclear Overhauser effect (NOE)-derived distance restraints, 12 hydrogen bonds, and 44 dihedral angles. The domain consists of a three-turn alpha-helix, two short beta-strands, and three beta-turns, encompassing Val117 to Pro164, which binds two zinc atoms. One zinc atom is coordinated by cysteine residues 119, 122, 142, 145, while cysteine 134, 137 and histidine 150, 159 coordinate the other. This topology is markedly different from the only other B-box structure reported; that of a type 2 B-box from Xenopus XNF7, which binds a single zinc atom. Of note, the B-box1 structure closely resembles the folds of the RING, ZZ and U-box domains of E3 and E4 ubiquitin enzymes, raising the possibility that the B-box1 domain either has E3 activity itself or enhances the activity of RING type E3 ligases (i.e. confers E4 enzyme activity). The structure of the MID1 B-box1 also reveals two potential protein interaction surfaces. One of these is likely to provide the binding interface for Alpha 4 that is required for the localized turnover of the catalytic subunit of PP2A, the major Ser/Thr phosphatase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号