首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W Borth 《FASEB journal》1992,6(15):3345-3353
Alpha 2-macroglobulin (alpha 2M) and related proteins share the function of binding host or foreign peptides and particles, thereby serving as humoral defense barriers against pathogens in the plasma and tissues of vertebrates. In human alpha 2M, several reactive sites including high-affinity sites for zinc, transglutaminase cross-linking sites, and reactive sites derived from the activated thiol ester can mediate reversible or irreversible capture of proteins of diverse biological functions. Alpha 2M interacts and captures virtually any proteinase whether self or foreign, suggesting a function as a unique "panproteinase inhibitor." Activation of alpha 2M generates novel binding sites, which mediate complex formation with cytokines and other peptides. Direct evidence of physical association of cytokines with activated alpha 2M indicated its role as biological response modifier in cell cultures. A mechanism commonly referred to as "clearance of activated alpha 2M" involves Ca(2+)-dependent binding to a specific cell surface receptor, a member of the low-density lipoprotein receptor supergene family, that mediates cellular uptake by endocytosis and delivery to endosomes and lysosomes. The peptide binding function of alpha 2M, therefore, may also be viewed as a mechanism that allows targeting of biologically active peptides to different cell types expressing the alpha 2M receptor. Internalized complexes may be dispatched into different pathways of endocytic/lysosomal pathways in a cell type-specific manner. In addition, bioactive peptides bound to alpha 2M may dissociate in the process of intracellular ligand sorting, thereby modulating cell function, or remain bound and share the catabolic fate of alpha 2M. The diversified and probably programmed binding functions of alpha 2M indicate that in addition to its role in trapping proteinases, it has other biological activities that remain to be fully defined. That alpha 2M may function as a binding and carrier protein with targeting characteristics is predicted from 1) the known functions of alpha 2M, and 2) the similarity of the fate of alpha 2M with proteins whose significance in targeting and intracellular trafficking has been studied in more detail.  相似文献   

2.
Alpha-crystallin, the major eye-lens protein with sequence homology with heat-shock proteins (HSPs), acts like a molecular chaperone by suppressing the aggregation of damaged crystallins and proteins. To gain more insight into its chaperoning ability, we used a protease as the model system that is known to require a propeptide (intramolecular chaperone) for its proper folding. The protease ("N" state) from Conidiobolus macrosporus (NCIM 1298) unfolds at pH 2.0 ("U" state) through a partially unfolded "I" state at pH 3.5 that undergoes transition to a molten globule-(MG) like "I(A)" state in the presence of 0.5 M sodium sulfate. The thermally-stressed I(A) state showed complete loss of structure and was prone to aggregation. Alpha-crystallin was able to bind to this state and suppress its aggregation, thereby preventing irreversible denaturation of the enzyme. The alpha-crystallin-bound I(A) state exhibited native-like secondary and tertiary structure showing the interaction of alpha-crystallin with the MG state of the protease. 8-Anilinonaphthalene sulphonate (ANS) binding studies revealed the involvement of hydrophobic interactions in the formation of the complex of alpha-crystallin and protease. Refolding of acid-denatured protease by dilution to pH 7.5 resulted in aggregation of the protein. Unfolding of the protease in the presence of alpha-crystallin and its subsequent refolding resulted in the generation of a near-native intermediate with partial secondary and tertiary structure. Our studies represent the first report of involvement of a molecular chaperone-like alpha-crystallin in the unfolding and refolding of a protease. Alpha-crystallin blocks the unfavorable pathways that lead to irreversible denaturation of the alkaline protease and keeps it in a near-native, folding-competent intermediate state.  相似文献   

3.
Keller M  Rüegg A  Werner S  Beer HD 《Cell》2008,132(5):818-831
Mammalian cells export most proteins by the endoplasmic reticulum/Golgi-dependent pathway. However, some proteins are secreted via unconventional, poorly understood mechanisms. The latter include the proinflammatory cytokines interleukin(IL)-1beta, IL-18, and IL-33, which require activation by caspase-1 for biological activity. Caspase-1 itself is activated by innate immune complexes, the inflammasomes. Here we show that secretion of the leaderless proteins proIL-1alpha, caspase-1, and fibroblast growth factor (FGF)-2 depends on caspase-1 activity. Although proIL-1alpha and FGF-2 are not substrates of the protease, we demonstrated their physical interaction. Secretome analysis using iTRAQ proteomics revealed caspase-1-mediated secretion of other leaderless proteins with known or unknown extracellular functions. Strikingly, many of these proteins are involved in inflammation, cytoprotection, or tissue repair. These results provide evidence for an important role of caspase-1 in unconventional protein secretion. By this mechanism, stress-induced activation of caspase-1 directly links inflammation to cytoprotection, cell survival, and regenerative processes.  相似文献   

4.
Binding of activated forms of the proteinase inhibitor alpha2-macroglobulin (alpha2M*) to cell surface-associated GRP78 on 1-LN human prostate cancer cells causes their proliferation. We have now examined the interplay between Akt activation, regulation of apoptosis, the unfolded protein response, and activation of NF-kappaB in alpha2M*-induced proliferation of 1-LN cells. Exposure of cells to alpha2M* (50 pM) induced phosphatidylinositol 3-kinase-dependent activation of Akt by phosphorylation at Thr-308 and Ser-473 with a concomitant 60-80% increase in Akt-associated kinase activity. ERK1/2 and p38 MAPK were also activated, but there was only a marginal effect on JNK activation. Treatment of 1-LN cells with alpha2M* down-regulated apoptosis and promoted NF-kappaB activation as shown by increases of Bcl-2, p-Bad(Ser-136), p-FOXO1(Ser-253), p-GSK3beta(Ser-9), XIAP, NF-kappaB, cyclin D1, GADD45beta, p-ASK1(Ser-83), and TRAF2 in a time of incubation-dependent manner. alpha2M* treatment of 1-LN cells, however, showed no increase in the activation of caspase -3, -9, or -12. Under these conditions, we observed increased unfolded protein response signaling as evidenced by elevated levels of GRP78, IRE1alpha, XBP-1, ATF4, ATF6, p-PERK, p-eIF2alpha, and GADD34 and reduced levels of GADD153. Silencing of GRP78 gene expression by RNAi suppressed activation of Akt(Thr-308), Akt(Ser-473), and IkappaB kinase alpha kinase. The effects of alpha2M* on the NF-kappaB activation, antiapoptotic signaling, unfolded protein response signaling, and proapoptotic signaling were also reversed by this treatment. In conclusion, alpha2M* promotes cellular proliferation of 1-LN prostate cancer cells by activating MAPK and Akt-dependent signaling, down-regulating apoptotic signaling, and activating unfolded protein response signaling.  相似文献   

5.
These studies explore the role of conformational change and exposed carbohydrate residues in the clearance of alpha 2-macroglobulin-trypsin (alpha 2M-T) complexes in the mouse. Human alpha 2-macroglobulin (alpha 2M) was purified and demonstrated to be homogeneous in the electrophoretic "slow" form. Two conformationally altered derivatives, alpha 2M-T and alpha 2-macroglobulin-methylamine (alpha 2M-MeNH2), were prepared and demonstrated to exist in the electrophoretic "fast" form. Radiolabeled alpha 2M-T and alpha 2M-MeNH2 were cleared rapidly with a half-life of 2-4 min following injection into mice. Radiolabeled native alpha 2M, however, remained in the circulation with a half-life of several hours. Both alpha 2M-T and alpha 2M-MeNH2 bound specifically to mouse peritoneal macrophages at 4 degrees C and occupancy of receptor sites increased with increasing time and radioligand concentration. Excess amounts of unlabeled alpha 2M-T or alpha 2M-MeNH2 cross-completed with trace amounts of the other in both clearance studies and binding assays, indicating that both derivatives were removed by the same receptor pathway. The clearance and binding of alpha 2M-T and alpha 2M-MeNH2 were not inhibited by excess amounts of unlabeled asialoorosomucoid, fucosyl-bovine serum albumin, mannosyl-BSA, or N-acetylglucosaminyl-BSA. Our results indicate that the clearance pathway removing alpha 2M-T complexes from the circulation recognizes a fundamental conformational change in alpha 2M secondary to protease binding, which can also be induced by exposure to methylamine. Therefore, other chemical or physical alterations that occur in alpha 2M upon binding trypsin, apart from the conformational change also present in alpha 2M-MeNH2, do not seem necessary for the recognition of alpha 2M-T by cells in the clearance pathway. In addition, this pathway appears distinct from several systems already described mediating clearance of glycoproteins through recognition of terminal galactose, fucose, N-acetylglucosamine, or mannose on oligosaccharide side chains.  相似文献   

6.
Numerous heptahelical receptors use activation of heterotrimeric G proteins to convey a multitude of extracellular signals to appropriate effector molecules in the cell. Both high specificity and correct integration of these signals are required for reliable cell function. Yet the molecular machineries that allow each cell to merge information flowing across different receptors are not well understood. Here we demonstrate that G protein-regulated inwardly rectifying K(+) (GIRK) channels can operate as dynamic integrators of alpha-adrenergic and cholinergic signals in atrial myocytes. Acting at the last step of the cholinergic signaling cascade, these channels are activated by direct interactions with betagamma subunits of the inhibitory G proteins (G betagamma), and efficiently translate M(2) muscarinic acetylcholine receptor (M2R) activation into membrane hyperpolarization. The parallel activation of alpha-adrenergic receptors imposed a distinctive "signature" on the function of M2R-activated GIRK1/4 channels, affecting both the probability of G betagamma binding to the channel and its desensitization. This modulation of channel function was correlated with a parallel depletion of G beta and protein phosphatase 1 from the oligomeric GIRK1 complexes. Such plasticity of the immediate GIRK signaling environment suggests that multireceptor integration involves large protein networks undergoing dynamic changes upon receptor activation.  相似文献   

7.
Chaperones and proteases share the ability to interact with unfolded proteins. Here we show that enzymatically inactive forms of the aspartic proteases HIV-1 protease and pepsin have inherent chaperone-like activity and can prevent the aggregation of denatured substrate proteins. In contrast to proteolysis, which requires dimeric enzymes, chaperone-like activity could be observed also with monomeric domains. The involvement of the active site cleft in the chaperone-like function was demonstrated by the inhibitory effect of peptide substrate inhibitors. The high structural similarity between aspartic proteases and the N-terminal double-psi barrels of Cdc48-like proteins, which are involved in the unfolding and dissociation of proteins, suggests that they share a common ancestor. The latent chaperone-like activity in aspartic proteases can be seen as a relic that has further evolved to serve substrate binding in the context of proteolytic activity.  相似文献   

8.
Matriptase, a type 2 transmembrane serine protease, is predominately expressed by epithelial and carcinoma cells in which hepatocyte growth factor activator inhibitor 1 (HAI-1), a membrane-bound, Kunitz-type serine protease inhibitor, is also expressed. HAI-1 plays dual roles in the regulation of matriptase, as a conventional protease inhibitor and as a factor required for zymogen activation of matriptase. As a consequence, activation of matriptase is immediately followed by HAI-1-mediated inhibition, with the activated matriptase being sequestered into HAI-1 complexes. Matriptase is also expressed by peripheral blood leukocytes, such as monocytes and macrophages; however, in contrast to epithelial cells, monocytes and macrophages were reported not to express HAI-1, suggesting that these leukocytes possess alternate, HAI-1-independent mechanisms regulating the zymogen activation and protease inhibition of matriptase. In the present study, we characterized matriptase complexes of 110 kDa in human milk, which contained no HAI-1 and resisted dissociation in boiling SDS in the absence of reducing agents. These complexes were further purified and dissociated into 80-kDa and 45-kDa fragments by treatment with reducing agents. Proteomic and immunological methods identified the 45-kDa fragment as the noncatalytic domains of matriptase and the 80-kDa fragment as the matriptase serine protease domain covalently linked to one of three different secreted serpin inhibitors: antithrombin III, 1-antitrypsin, and 2-antiplasmin. Identification of matriptase-serpin inhibitor complexes provides evidence for the first time that the proteolytic activity of matriptase, from those cells that express no or low levels of HAI-1, may be controlled by secreted serpins. protease; type 2 transmembrane serine protease; protease inhibitor; ST-14; hepatocyte growth factor activator inhibitor 1  相似文献   

9.
10.
Binding of IL-1 beta to alpha-macroglobulins and release by thioredoxin.   总被引:2,自引:0,他引:2  
Human alpha 2-macroglobulin (H alpha 2M) is a major IL-1 beta binding plasma protein. The characteristics of the H alpha 2M IL-1 beta complex formation suggested, that cleavage of the internal thiol ester in other members of the alpha-macroglobulin family (alpha M) could enable these proteins to bind IL-1 beta. Characterization of optimal conditions for binding 125I IL-1 beta to H alpha 2M showed that H alpha 2M-IL-1 beta complex formation could be obtained over a pH range of 6.3 to 9 in the presence of some metal cations (i.e., Zn2+, Cd2+, Cu2+, Ni2+). Other divalent metal cations (i.e., Mn2+, Mg2+, Ca2+) were without effect. Time kinetic studies showed that binding of IL-1 beta to H alpha 2M was complete within 200 min and that H alpha 2M-IL-1 beta complexes became increasingly resistant to dissociation by boiling in SDS as a function of incubation time. Human pregnancy zone protein, rat alpha 1-, alpha 2-macroglobulin (R alpha 1M, R alpha 2M), all homologous with H alpha 2M, were tested for their ability to bind IL-1 beta. In each instance, alpha M-IL-1 beta complex formation was observed only after treatment of alpha M with methylamine, a primary amine that causes cleavage of the internal thiol ester in alpha M and the appearance of free thiol groups. Similarly, for each of these proteins, complex formation was increased several fold in the presence of Zn2+. Competition experiments using cytokines or proteins of similar molecular mass as IL-1 beta established that only unlabeled IL-1 beta was effective in inhibiting binding of 125I IL-1 beta to H"F" alpha 2M. Acylation of H"F" alpha 2M by diethylpyrocarbonate blocked the binding of IL-1 beta when analyzed by native PAGE. Deacylation of H"F" alpha 2M with hydroxylamine partially restored the binding capacity of H"F" alpha 2M further supporting the involvement of histidyl residues in the Zn2(+)-dependent binding of IL-1 beta. Reduced thioredoxin, but not its alkylated form, from Escherichia coli readily releases H"F" alpha 2M bound IL-1 beta under conditions that did not lead to reduction of disulfide bonds in H"F" alpha 2M. The action of thioredoxin also augmented IL-1-like activity in two independent bioassays suggesting that H"F" alpha 2M bound IL-1 beta is partially biologically inactive or latent. These results suggest that "activated" alpha M exert a modulating role for IL-1 beta by exposing specific binding sites, which are inaccessible in the native proteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
A new, simplified technique for the synthesis of polyethylene glycol (PEG) derivatives of proteins utilizing 1,1'-carbonyldiimidazole for PEG activation, is described. PEG derivatives of superoxide dismutase, alpha 2-macroglobulin, alpha 2-macroglobulin-trypsin, and lactoferrin were prepared and studied. Superoxide dismutase coupled to PEG preserved 95% of its original activity while its plasma half-life increased from 3.5 min to 9 or more hours depending on the PEG derivative studied. PEG-derivatized alpha 2-macroglobulin showed decreased protease binding activity but PEG derivatives of performed alpha 2-macroglobulin-trypsin demonstrated no loss of activity. The plasma clearance of PEG-alpha 2-macroglobulin-trypsin was prolonged significantly compared to native alpha 2-macroglobulin-trypsin, particularly when a high-molecular-weight PEG was coupled to the protease inhibitor complex. The plasma clearance half-life of lactoferrin was increased 5- to 20-fold by this modification. Trinitrobenzenesulfonic acid titration studies demonstrated that epsilon-amino groups of lysine residues are modified by the coupling of carbonyldiimidazole-activated PEG to proteins.  相似文献   

12.
Staphostatins constitute a family of staphylococcal cysteine protease inhibitors sharing a lipocalin-like fold and a unique mechanism of action. Each of these cytoplasmic proteins is co-expressed from one operon, together with a corresponding target extracellular cysteine protease (staphopain). To cast more light on staphostatin/staphopain interaction and the evolution of the encoding operons, we have cloned and characterized a staphopain (StpA2aur CH-91) and its inhibitor (StpinA2aur CH-91) from a novel staphylococcal thiol protease operon (stpAB2CH-91) identified in S. aureus strain CH-91. Furthermore, we have expressed a staphostatin from Staphylococcus warneri (StpinBwar) and characterized its target protease (StpBwar). Analysis of the reciprocal interactions among novel and previously described members of the staphostatin and staphopain families demonstrates that the co-transcribed protease is the primary target for each staphostatin. Nevertheless, the inhibitor derived from one species of Staphylococcus can inhibit the staphopain from another species, although the Ki values are generally higher and inhibition only occurs if both proteins belong to the same subgroup of either S. aureus staphopain A/staphostatin A (alpha group) or staphopain B/staphostatin B (beta group) orthologs. This indicates that both subgroups arose in a single event of ancestral allelic duplication, followed by parallel evolution of the protease/inhibitor pairs. The tight coevolution is likely the result of the known deleterious effects of uncontrolled staphopain action.  相似文献   

13.
alpha2-Macroglobulin (alpha2M) has been identified as a carrier protein for beta-amyloid (Abeta) decreasing fibril formation and affecting the neurotoxicity of this peptide. The alpha2-macroglobulin receptor/low density lipoprotein receptor related protein (LRP) is involved in the internalization and degradation of the alpha2M/Abeta complexes and its impairment has been reported to occur in Alzheimer's disease. Previous studies have shown alpha2M to determine an enhancement or a reduction of Abeta toxicity in different culture systems. In order to clarify the role of alpha2M in Abeta neurotoxicity, we challenged human neuroblastoma cell lines with activated alpha2M in combination with Abeta. Our results show that in neuroblastoma cells expressing high levels of LRP, the administration of activated alpha2M protects the cells from Abeta neurotoxicity. Conversely, when this receptor is not present alpha2M determines an increase in Abeta toxicity as evaluated by MTT and TUNEL assays. In LRP-negative cells transfected with the full-length human LRP, the addition of activated alpha2M resulted to be protective against Abeta-induced neurotoxicity. By means of recombinant proteins we ascribed the neurotoxic activity of alpha2M to its FP3 fragment which has been previously shown to bind and neutralize transforming growth factor-beta. These studies provide evidence for both a neuroprotective and neurotoxic role of alpha2M regulated by the expression of its receptor LRP.  相似文献   

14.
Partially or completely unfolded polypeptides are highly prone to aggregation due to nonspecific interactions between their exposed hydrophobic surfaces. Extracellular proteins are continuously subjected to stresses conditions, but the existence of extracellular chaperones remains largely unexplored. The results presented here demonstrate that one of the most abundant extracellular proteins, fibrinogen has chaperone-like activity. Fibrinogen can specifically bind to nonnative form of citrate synthase and inhibit its thermal aggregation and inactivation in an ATP-independent manner. Interestingly, fibrinogen maintains thermal-denatured luciferase in a refolding competent state allowing luciferase to be refolded in cooperation with rabbit reticulocyte lysate. Fibrinogen also inhibits fibril formation of yeast prion protein Sup35 (NM). Furthermore, fibrinogen rescues thermal-induced protein aggregation in the plasma of fibrinogen-deficient mice. Our studies demonstrate the chaperone-like activity of fibrinogen, which not only provides new insights into the extracellular chaperone protein system, but also suggests potential diagnostic and therapeutic approaches to fibrinogen-related pathological conditions.  相似文献   

15.
Human alpha 2-macroglobulin (alpha 2M) undergoes a conformational change after reaction with proteases. In this report, it is shown that although two trypsin molecules may bind simultaneously to each alpha 2M, only one trypsin is necessary to induce alpha 2M conformational change. Ternary complexes of alpha 2M and either two radioiodinated trypsins or two nonradioiodinated trypsins were purified by gel filtration chromatography. The nonradioactive complex did not bind 125I-trypsin, even after incubation for 24 h with the free protease present at a large molar excess. Under comparable conditions, a large molar excess of nonradioactive trypsin did not cause significant dissociation of the complex prepared with radioiodinated protease. Equations are presented that distinguish between two separate models of protease binding and demonstrate that binary alpha 2M-trypsin complex retains no significant trypsin binding activity despite the presence of a vacant protease binding site. Purified alpha 2M-plasmin complex, with 1.10 mol of plasmin/mol of inhibitor, also retained no trypsin binding activity as assessed with radioiodinated protein binding experiments. These studies suggest that reactions of alpha 2M with proteases are accurately described by the "trap hypothesis" (Barrett, A. J., and Starkey, P. M. (1973) Biochem. J. 133, 709-724) independent of protease size or binding stoichiometry.  相似文献   

16.
In contrast to the eucaryal 26S proteasome and the bacterial ATP-dependent proteases, little is known about the energy-dependent proteolysis in members of the third domain, Archae. We cloned a gene homologous to ATP-dependent Lon protease from a hyperthermophilic archaeon and observed the unique properties of the archaeal Lon. Lon from Thermococcus kodakaraensis KOD1 (Lon(Tk)) is a 70-kDa protein with an N-terminal ATPase domain belonging to the AAA(+) superfamily and a C-terminal protease domain including a putative catalytic triad. Interestingly, a secondary structure prediction suggested the presence of two transmembrane helices within the ATPase domain and Western blot analysis using specific antiserum against the recombinant protein clearly indicated that Lon(Tk) was actually a membrane-bound protein. The recombinant Lon(Tk) possessed thermostable ATPase activity and peptide cleavage activity toward fluorogenic peptides with optimum temperatures of 95 and 70 degrees C, respectively. Unlike the enzyme from Escherichia coli, we found that Lon(Tk) showed higher peptide cleavage activity in the absence of ATP than it did in the presence of ATP. When three kinds of proteins with different thermostabilities were examined as substrates, it was found that Lon(Tk) required ATP for degradation of folded proteins, probably due to a chaperone-like function of the ATPase domain, along with ATP hydrolysis. In contrast, Lon(Tk) degraded unfolded proteins in an ATP-independent manner, suggesting a mode of action in Lon(Tk) different from that of its bacterial counterpart.  相似文献   

17.
alpha(2)-Macroglobulin (alpha(2)M) is a plasma protease inhibitor, which reversibly binds growth factors and, in its activated form, binds to low density lipoprotein receptor-related protein (LRP-1), an endocytic receptor with cell signaling activity. Because distinct domains in alpha(2)M are responsible for its various functions, we hypothesized that the overall effects of alpha(2)M on cell physiology reflect the integrated activities of multiple domains, some of which may be antagonistic. To test this hypothesis, we expressed the growth factor carrier site and the LRP-1 recognition domain (RBD) as separate GST fusion proteins (FP3 and FP6, respectively). FP6 rapidly and robustly activated Akt and ERK/MAP kinase in Schwann cells and PC12 cells. This response was blocked by LRP-1 gene silencing or by co-incubation with the LRP-1 antagonist, receptor-associated protein. The activity of FP6 also was blocked by mutating Lys(1370) and Lys(1374), which precludes LRP-1 binding. FP3 blocked activation of Akt and ERK/MAP kinase in response to nerve growth factor-beta (NGF-beta) but not FP6. In PC12 cells, FP6 promoted neurite outgrowth and expression of growth-associated protein-43, whereas FP3 antagonized the same responses when NGF-beta was added. The ability of FP6 to trigger LRP-1-dependent cell signaling in PC12 cells was reproduced by the 18-kDa RBD, isolated from plasma-purified alpha(2)M by proteolysis and chromatography. We propose that the effects of intact alpha(2)M on cell physiology reflect the degree of penetration of activities associated with different domains, such as FP3 and FP6, which may be regulated asynchronously by conformational change and by other regulatory proteins in the cellular microenvironment.  相似文献   

18.
Tetradecameric Clp protease core complexes in non-photosynthetic plastids of roots, flower petals, and in chloroplasts of leaves of Arabidopsis thaliana were purified based on native mass and isoelectric point and identified by mass spectrometry. The stoichiometry between the subunits was determined. The protease complex consisted of one to three copies of five different serine-type protease Clp proteins (ClpP1,3-6) and four non-proteolytic ClpR proteins (ClpR1-4). Three-dimensional homology modeling showed that the ClpP/R proteins fit well together in a tetradecameric complex and also indicated unique contributions for each protein. Lateral exit gates for proteolysis products are proposed. In addition, ClpS1,2, unique to land plants, tightly interacted with this core complex, with one copy of each per complex. The three-dimensional modeling show that they do fit well on the axial sites of the ClpPR cores. In contrast to plastids, plant mitochondria contained a single approximately 320-kDa homo-tetradecameric ClpP2 complex, without association of ClpR or ClpS proteins. It is surprising that the Clp core composition appears identical in all three plastid types, despite the remarkable differences in plastid proteome composition. This suggests that regulation of plastid proteolysis by the Clp machinery is not through differential regulation of ClpP/R/S gene expression, but rather through substrate recognition mechanisms and regulated interaction of chaperone-like molecules (ClpS1,2 and others) to the ClpP/R core.  相似文献   

19.
Several publications have described in the past properties of partly purified horse alpha 2-macroglobulin (alpha 2M) which are strikingly different from the human alpha 2M. Horse alpha 2M was therefore isolated to purity by classical procedures, i.e. affinity chromatography, ion exchange chromatography and gel filtration, and its properties are compared with those of its human counterpart. The molecular weight of the native protein and its subunits, the isoelectrofocusing pattern and the change in electrophoretic mobility caused by interaction with protease were similar to those of human alpha 2M. Horse alpha 2M had a broad enzyme specificity and inhibited enzymatic action on macromolecules but not on small molecular weight synthetic substrates. In addition the horse and human alpha 2M were found to be immunochemically related when examined by specific antisera to human as well as to horse alpha 2-macroglobulin.  相似文献   

20.
The alternative sigma factor σE is activated by unfolded outer membrane proteins (OMPs) and plays an essential role in Salmonella pathogenesis. The canonical pathway of σE activation in response to envelope stress involves sequential proteolysis of the anti-sigma factor RseA by the PDZ proteases DegS and RseP. Here we show that σE in Salmonella enterica sv. Typhimurium can also be activated by acid stress. A σE-deficient mutant exhibits increased susceptibility to acid pH and reduced survival in an acidified phagosomal vacuole. Acid activation of σE-dependent gene expression is independent of the unfolded OMP signal or the DegS protease but requires processing of RseA by RseP. The RseP PDZ domain is indispensable for acid induction, suggesting that acid stress may disrupt an inhibitory interaction between RseA and the RseP PDZ domain to allow RseA proteolysis in the absence of antecedent action of DegS. These observations demonstrate a novel environmental stimulus and activation pathway for the σE regulon that appear to be critically important during Salmonella –host cell interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号