首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mel-18 is a mammalian homolog of Polycomb group (PcG) genes. Microarray analysis revealed that Mel-18 expression was induced during endothelial progenitor cell (EPC) differentiation and correlates with the expression of EC-specific protein markers. Overexpression of Mel-18 promoted EPC differentiation and angiogenic activity of ECs. Accordingly, silencing Mel-18 inhibited EC migration and tube formation in vitro. Gene expression profiling showed that Mel-18 regulates angiogenic genes including kinase insert domain receptor (KDR), claudin 5, and angiopoietin-like 2. Our findings demonstrate, for the first time, that Mel-18 plays a significant role in the angiogenic function of ECs by regulating endothelial gene expression.  相似文献   

2.
The ability of Moloney murine leukemia virus to accelerate lymphomagenesis in E mu-myc transgenic mice is frequently associated with proviral integration within a locus denoted bmi-1. This locus contains not only the bmi-1 gene implicated as a collaborator with myc in lymphomagenesis but also just upstream an unknown gene denoted bup. The nucleotide sequence reported here for bup cDNA and flanking genomic sequences reveals that this widely expressed gene comprises at least 7 exons and potentially encodes a polypeptide of 195 amino acid residues. Computer searches with this polypeptide sequence revealed no close homolog in the databases, nor any conserved motifs, and it is unrelated to the product of the mel-13 gene, which lies just upstream from the bmi-1 homolog mel-18.  相似文献   

3.
We previously isolated the mel-18 gene, a mammalian Polycomb group (PcG)-related gene with homology to bmi-1 oncogene. We show in this paper the existence of a new gene, mel-13, which overlapped with the mel-18 anti-oncogene. We discuss the relationships between mel-13 and the mel-18, bup, and Su(z)2 genes.  相似文献   

4.
5.
6.
7.
Polycomb group (PcG) proteins play a role in the maintenance of cellular identity throughout many rounds of cell division through the regulation of gene expression. In this report we demonstrate that the loss of the PcG gene mel-18 impairs the expansion of the most immature T progenitor cells at a stage before the rearrangement of the TCR beta-chain gene in vivo and in vitro. This impairment of these T progenitors appears to be associated with increased susceptibility to cell death. We also show that the expression of Hes-1, one of the target genes of the Notch signaling pathway, is drastically down-regulated in early T progenitors isolated from mel-18(-/-) mice. In addition, mel-18(-/-) T precursors could not maintain the Hes-1 expression induced by Delta-like-1 in monolayer culture. Collectively, these data indicate that mel-18 contributes to the maintenance of the active state of the Hes-1 gene as a cellular memory system, thereby supporting the expansion of early T progenitors.  相似文献   

8.
9.
The Polycomb group of (PcG) genes were originally described in Drosophila, but many PcG genes have mammalian homologs. Genetic studies in flies and mice show that mutations in PcG genes cause posterior transformations caused by failure to maintain repression of homeotic loci, suggesting that PcG proteins have conserved functions. The Drosophila gene Sex comb on midleg (Scm) encodes an unusual PcG protein that shares motifs with the PcG protein polyhomeotic, and with a Drosophila tumor suppressor, lethal(3)malignant brain tumor (l(3)mbt). Expressed sequence tag (EST) databases were searched to recover putative mammalian Scm homologs, which were used to screen murine cDNA libraries. The recovered cDNA encodes two mbt repeats and the SPM domain that characterize Scm, but lacks the cysteine clusters and the serine/threonine-rich region found at the amino terminus of Scm. Accordingly, we have named the gene Sex comb on midleg homolog 1 (Scmh1). Like their Drosophila counterparts, Scmh1 and the mammalian polyhomeotic homolog RAE28/mph1 interact in vitro via their SPM domains. We analyzed the expression of Scmh1 and rae28/mph1 using northern analysis of embryos and adult tissues, and in situ hybridization to embryos. The expression of Scmh1 and rae28/mph1 is well correlated in most tissues of embryos. However, in adults, Scmh1 expression was detected in most tissues, whereas mph1/rae28 expression was restricted to the gonads. Scmh1 is strongly induced by retinoic acid in F9 and P19 embryonal carcinoma cells. Scmh1 maps to 4D1-D2.1 in mice. These data suggest that Scmh1 will have an important role in regulation of homeotic genes in embryogenesis and that the interaction with RAE28/mph1 is important in vivo.  相似文献   

10.
11.
12.
13.
The Polycomb group (PcG) gene products regulate the maintenance of the homeobox gene expression in Drosophila and vertebrates and also the cell cycle progression in thymocytes and Th2 cell differentiation in mature T cells. We herein studied the role of PcG gene bmi-1 product in Th1/Th2 cell differentiation and found that Bmi-1 facilitates Th2 cell differentiation in a Ring finger-dependent manner. Biochemical studies indicate that Bmi-1 interacts with GATA3 in T cells, which is dependent on the Ring finger of Bmi-1. The overexpression of Bmi-1 resulted in a decreased ubiquitination and an increased protein stability of GATA3. In bmi-1-deficient Th cells, the levels of Th2 cell differentiation decreased as the degradation and ubiquitination on GATA3 increased. Therefore, Bmi-1 plays a crucial role in the control of Th2 cell differentiation in a Ring finger-dependent manner by regulating GATA3 protein stability.  相似文献   

14.
15.
16.
17.
18.
Polycomb group genes were identified as a conserved group of genes whose products are required in multimeric complexes to maintain spatially restricted expression of Hox cluster genes. Unlike in Drosophila, in mammals Polycomb group (PcG) genes are represented as highly related gene pairs, indicative of duplication during metazoan evolution. Mel18 and Bmi1 are mammalian homologs of Drosophila Posterior sex combs. Mice deficient for Mel18 or Bmi1 exhibit similar posterior transformations of the axial skeleton and display severe immune deficiency, suggesting that their gene products act on overlapping pathways/target genes. However unique phenotypes upon loss of either Mel18 or Bmi1 are also observed. We show using embryos doubly deficient for Mel18 and Bmi1 that Mel18 and Bmi1 act in synergy and in a dose-dependent and cell type-specific manner to repress Hox cluster genes and mediate cell survival of embryos during development. In addition, we demonstrate that Mel18 and Bmi1, although essential for maintenance of the appropriate expression domains of Hox cluster genes, are not required for the initial establishment of Hox gene expression. Furthermore, we show an unexpected requirement for Mel18 and Bmi1 gene products to maintain stable expression of Hox cluster genes in regions caudal to the prospective anterior expression boundaries during subsequent development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号