首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leukocyte adhesion through L-selectin to peripheral node addressin (PNAd, also known as MECA-79 antigen), an L-selectin ligand expressed on high endothelial venules, has been shown to require a minimum level of fluid shear stress to sustain rolling interactions (Finger, E.B., K.D. Puri, R. Alon, M.B. Lawrence, V.H. von Andrian, and T.A. Springer. 1996. Nature (Lond.). 379:266–269). Here, we show that fluid shear above a threshold of 0.5 dyn/cm2 wall shear stress significantly enhances HL-60 myelocyte rolling on P- and E-selectin at site densities of 200/μm2 and below. In addition, gravitational force is sufficient to detach HL60 cells from P- and E-selectin substrates in the absence, but not in the presence, of flow. It appears that fluid shear–induced torque is critical for the maintenance of leukocyte rolling. K562 cells transfected with P-selectin glycoprotein ligand-1, a ligand for P-selectin, showed a similar reduction in rolling on P-selectin as the wall shear stress was lowered below 0.5 dyn/cm2. Similarly, 300.19 cells transfected with L-selectin failed to roll on PNAd below this level of wall shear stress, indicating that the requirement for minimum levels of shear force is not cell type specific. Rolling of leukocytes mediated by the selectins could be reinitiated within seconds by increasing the level of wall shear stress, suggesting that fluid shear did not modulate receptor avidity. Intravital microscopy of cremaster muscle venules indicated that the leukocyte rolling flux fraction was reduced at blood centerline velocities less than 1 mm/s in a model in which rolling is mediated by L- and P-selectin. Similar observations were made in L-selectin–deficient mice in which leukocyte rolling is entirely P-selectin dependent. Leukocyte adhesion through all three selectins appears to be significantly enhanced by a threshold level of fluid shear stress.  相似文献   

2.
Selectin-ligand interactions (bonds) mediate leukocyte rolling on vascular surfaces. The molecular basis for differential ligand recognition by selectins is poorly understood. Here, we show that substituting one residue (A108H) in the lectin domain of L-selectin increased its force-free affinity for a glycosulfopeptide binding site (2-GSP-6) on P-selectin glycoprotein ligand-1 (PSGL-1) but not for a sulfated-glycan binding site (6-sulfo-sialyl Lewis x) on peripheral node addressin. The increased affinity of L-selectinA108H for 2-GSP-6 was due to a faster on-rate and to a slower off-rate that increased bond lifetimes in the absence of force. Rather than first prolonging (catching) and then shortening (slipping) bond lifetimes, increasing force monotonically shortened lifetimes of L-selectinA108H bonds with 2-GSP-6. When compared with microspheres bearing L-selectin, L-selectinA108H microspheres rolled more slowly and regularly on 2-GSP-6 at low flow rates. A reciprocal substitution in P-selectin (H108A) caused faster microsphere rolling on 2-GSP-6. These results distinguish molecular mechanisms for L-selectin to bind to PSGL-1 and peripheral node addressin and explain in part the shorter lifetimes of PSGL-1 bonds with L-selectin than P-selectin.  相似文献   

3.
The selectin family of adhesion molecules mediates attachment and rolling of neutrophils to stimulated endothelial cells. This step of the inflammatory response is a prerequisite to firm attachment and extravasation. We have reported that microspheres coated with sialyl Lewis(x) (sLe(x)) interact specifically and roll over E-selectin and P-selectin substrates (Brunk et al., 1996; Rodgers et al 2000). This paper extends the use of the cell-free system to the study of the interactions between L-selectin and sLe(x) under flow. We find that sLe(x) microspheres specifically interact with and roll on L-selectin substrates. Rolling velocity increases with wall shear stress and decreases with increasing L-selectin density. Rolling velocities are fast, between 25 and 225 microm/s, typical of L-selectin interactions. The variability of rolling velocity, quantified by the variance in rolling velocity, scales linearly with rolling velocity. Rolling flux varies with both wall shear stress and L-selectin site density. At a density of L-selectin of 800 sites/microm(2), the rolling flux of sLe(x) coated microspheres goes through a clear maximum with respect to shear stress at 0.7 dyne/cm(2). This behavior, in which the maintenance and promotion of rolling interactions on selectins requires shear stress above a threshold value, is known as the shear threshold effect. We found that the magnitude of the effect is greatest at an L-selectin density of 800 sites/microm(2) and gradually diminishes with increasing L-selectin site density. Our study is the first to reveal the shear threshold effect with a cell free system and the first to show the dependence of the shear threshold effect on L-selectin site density in a reconstituted system. Our ability to recreate the shear threshold effect in a cell-free system strongly suggests the origin of the effect is in the physical chemistry of L-selectin interaction with its ligand, and largely eliminates cellular features such as deformability or topography as its cause.  相似文献   

4.
We demonstrate an additional step and a positive feedback loop in leukocyte accumulation on inflamed endothelium. Leukocytes in shear flow bind to adherent leukocytes through L-selectin/ligand interactions and subsequently bind downstream and roll on inflamed endothelium, purified E-selectin, P-selectin, L-selectin, VCAM-1, or peripheral node addressin. Thus adherent leukocytes nucleate formation of strings of rolling cells and synergistically enhance leukocyte accumulation. Neutrophils, monocytes, and activated T cell lines, but not peripheral blood T lymphocytes, tether to each other through L-selectin. L- selectin is not involved in direct binding to either E- or P-selectin and is not a major counterreceptor of endothelial selectins. Leukocyte- leukocyte tethers are more tolerant to high shear than direct tethers to endothelial selectins and, like other L-selectin-mediated interactions, require a shear threshold. Synergism between leukocyte- leukocyte and leukocyte-endothelial interactions introduces novel regulatory mechanisms in recruitment of leukocytes in inflammation.  相似文献   

5.
P-selectin glycoprotein ligand-1 (PSGL-1) is a mucin on leukocytes that binds to selectins. P-selectin binds to an N-terminal region of PSGL-1 that requires sulfation of at least one of three clustered tyrosines (TyrSO(3)) and an adjacent core-2-based O-glycan expressing sialyl Lewis x (C2-O-sLe(x)). We synthesized glycosulfopeptides (GSPs) modeled after this region of PSGL-1 to explore the roles of individual TyrSO(3) residues, the placement of C2-O-sLe(x) relative to TyrSO(3), the relative contributions of fucose and sialic acid on C2-O-sLe(x), and the function of the peptide sequence for binding to P-selectin. Binding of GSPs to P-selectin was measured by affinity chromatography and equilibrium gel filtration. 2-GSP-6, which has C2-O-sLe(x) at Thr-57 and TyrSO(3) at residues 46, 48, and 51, bound to P-selectin with high affinity (K(d) approximately 650 nm), whereas an isomeric trisulfated GSP containing C2-O-sLe(x) at Thr-44 bound much less well. Non-sulfated glycopeptide (2-GP-6) containing C2-O-sLe(x) at Thr-57 bound to P-selectin with approximately 40-fold lower affinity (K(d) approximately 25 microm). Proteolysis of 2-GP-6 abolished detectable binding of the residual C2-O-sLe(x)-Thr to P-selectin, demonstrating that the peptide backbone contributes to binding. Monosulfated and disulfated GSPs bound significantly better than non-sulfated 2-GP-6, but sulfation of Tyr-48 enhanced affinity (K(d) approximately 6 microm) more than sulfation of Tyr-46 or Tyr-51. 2-GSP-6 lacking sialic acid bound to P-selectin at approximately 10% that of the level of the parent 2-GSP-6, whereas 2-GSP-6 lacking fucose did not detectably bind; thus, fucose contributes more than sialic acid to binding. Reducing NaCl from 150 to 50 mm markedly enhanced binding of 2-GSP-6 to P-selectin (K(d) approximately 75 nm), demonstrating the charge dependence of the interaction. These results reveal a stereospecific interaction of P-selectin with PSGL-1 that includes distinct contributions of each of the three TyrSO(3) residues, adjacent peptide determinants, and fucose/sialic acid on an optimally positioned core-2 O-glycan.  相似文献   

6.
Selectin-ligand interactions mediate the tethering and rolling of circulating leukocytes on vascular surfaces during inflammation and immune surveillance. To support rolling, these interactions are thought to have rapid off-rates that increase slowly as wall shear stress increases. However, the increase of off-rate with force, an intuitive characteristic named slip bonds, is at odds with a shear threshold requirement for selectin-mediated cell rolling. As shear drops below the threshold, fewer cells roll and those that do roll less stably and with higher velocity. We recently demonstrated a low force regime where the off-rate of P-selectin interacting with P-selectin glycoprotein ligand-1 (PSGL-1) decreased with increasing force. This counter-intuitive characteristic, named catch bonds, might partially explain the shear threshold phenomenon. Because L-selectin-mediated cell rolling exhibits a much more pronounced shear threshold, we used atomic force microscopy and flow chamber experiments to determine off-rates of L-selectin interacting with their physiological ligands and with an antibody. Catch bonds were observed at low forces for L-selectin-PSGL-1 interactions coinciding with the shear threshold range, whereas slip bonds were observed at higher forces. These catch-slip transitional bonds were also observed for L-selectin interacting with endoglycan, a newly identified PSGL-1-like ligand. By contrast, only slip bonds were observed for L-selectin-antibody interactions. These findings suggest that catch bonds contribute to the shear threshold for rolling and are a common characteristic of selectin-ligand interactions.  相似文献   

7.
Neutrophils roll on P-selectin expressed by activated platelets or endothelial cells under the shear stresses in the microcirculation. P- selectin glycoprotein ligand-1 (PSGL-1) is a high affinity ligand for P- selectin on myeloid cells. However, it has not been demonstrated that PSGL-1 contributes to the rolling of neutrophils on P-selectin. We developed two IgG mAbs, PL1 and PL2, that appear to recognize protein- dependent epitopes on human PSGL-1. The mAbs bound to PSGL-1 on all leukocytes as well as on heterologous cells transfected with PSGL-1 cDNA. PL1, but not PL2, blocked binding of 125-I-PSGL-1 to immobilized P-selectin, binding of fluid-phase P-selectin to myeloid and lymphoid leukocytes, adhesion of neutrophils to immobilized P-selectin under static conditions, and rolling of neutrophils on P-selectin-expressing CHO cells under a range of shear stresses. PSGL-1 was localized to microvilli on neutrophils, a topography that may facilitate its adhesive function. These data indicate that (a) PSGL-1 accounts for the high affinity binding sites for P-selectin on leukocytes, and (b) PSGL- 1 must interact with P-selectin in order for neutrophils to roll on P- selectin at physiological shear stresses.  相似文献   

8.
We have recently described patterns of adhesion of different types of leukocytes downstream of a backward facing step. Here the predicted fluid dynamics in channels incorporating backward facing steps are described, and related to the measured velocities of flowing cells, patterns of attachment and characteristics of rolling adhesion for neutrophils perfused over P-selectin. Deeper (upstream depth 300 microm, downstream depth 600 microm, maximum wall shear stress approximately 0.1 Pa) and shallower (upstream depth 260 microm, downstream depth 450 microm, maximum wall shear stress approximately 0.3 Pa) channels were compared. Computational fluid dynamics (CFD) predicted the presence of vortices downstream of the steps, distances to reattachment of flow, local wall shear stresses and components of velocity parallel and perpendicular to the wall. Measurements of velocities of perfused neutrophils agreed well with predictions, and suggested that adhesion to P-selectin should be possible in the regions of recirculating flow, but not downstream in re-established flow in the high shear channel. When channels were coated with a P-selectin-Fc chimaera, neutrophils were captured from flow and immobilised. Capture showed local maxima around the reattachment points, but was absent elsewhere in the high shear chamber. In the low shear chamber there was depression of adhesion just beyond the reattachment point because of expansion of flow and depletion of neutrophils near the wall. Inside the recirculation zones, adhesion decreased approaching the step because of an increasing, vertically upward velocity component. When channels were coated with P-selectin, neutrophils rolled in all regions, but lifted off the surface as they rolled backwards into low shear regions near the step. Rolling velocity in the recirculation zone was independent of shear stress, possibly because of the effects of vertical lift. We conclude that while local wall shear stress influences adhesive behavior, delivery of cells to the wall and their behavior after capture also depend on components of flow perpendicular to the wall.  相似文献   

9.
When a cell adhered to another cell or substratum via surface proteins is forced to detach, lipid membrane tethers are often extruded from the cell surface before the protein bond dissociates. For example, during the inflammatory reaction leukocytes roll on the surface of activated endothelial cells. The rolling adhesion is mediated by interactions of selectins with their ligands, e.g., P-selectin glycoprotein ligand (PSGL)-1, which extrudes membrane tethers from the surfaces of both leukocytes and endothelial cells. Membrane tether extrusion has been suggested to regulate leukocyte rolling. Here we examine several factors that may affect forces required to initiate membrane tethers, or initial tether force. It was found that initial tether forces were similar regardless of the presence or absence of the cytoplasmic tail of P-selectin and regardless of whether the tethers were extruded via binding to PSGL-1 or Fcγ receptors. Initial tether forces were found to depend on the cell types tested and were greatly reduced by treatment of latrunculin A, which inhibits actin polymerization. These data provide additional insights to the control of membrane tether extrusion, which should be taken into account when cellular functions such as rolling where tether extrusion plays a regulatory role are compared using different cell types expressing the same molecule.  相似文献   

10.
During inflammation, flowing leukocytes tether to and roll on vascular surfaces through the association and dissociation of selectin/ligand bonds. The interactions of P- and L- selectins with their respective ligands exhibit catch-slip bonds, such that increasing force initially prolongs and then shortens bond lifetimes. In addition, catch-slip bonds have been shown to govern L-selectin-mediated cell rolling. Using a flow chamber and biomembrane force probe, we show a triphasic force dependence of E-selectin/ligand dissociation that initially behaves as slip bonds, then transitions to catch bonds, and finally transitions again to slip bonds as the force increases. These transitions govern the velocities of neutrophils, HL-60 cells, and Colo-205 cells rolling on E-selectin, as evidenced by the fact that their velocities exhibited a triphasic force dependence that inversely matched the triphasic lifetime-force relationship. At low forces, slip bonds may also precede catch bonds for interactions of P- and L-selectin with their ligands.  相似文献   

11.
Selectin-mediated binding of tumor cells to platelets, leukocytes, and vascular endothelium may regulate their hematogenous spread in the microvasculature. We recently reported that CD44 variant isoforms (CD44v) on LS174T colon carcinoma cells possess selectin binding activity. Here we extended those findings by showing that T84 and Colo205 colon carcinoma cells bind selectins via sialidase-sensitive O-linked glycans presented on CD44v, independent of heparan and chondroitin sulfate. To assess the functional role of CD44v in selectin-mediated binding, we quantified the adhesion to selectins of T84 cell subpopulations sorted based on their CD44 expression levels and stable LS174T cell lines generated using CD44 short hairpin RNA. High versus low CD44-expressing T84 cells tethered more efficiently to P- and L-selectin, but not E-selectin, and rolled more slowly on P- and E-selectin. Knocking down CD44 expression on LS174T cells inhibited binding to P-selectin and increased rolling velocities over P- and L-selectin relative to control-transfected cells, without affecting tethering and rolling on E-selectin, however. Blot rolling analysis revealed the presence of alternative sialylated glycoproteins with molecular masses of approximately 170 and approximately 130 kDa, which can mediate selectin binding in CD44-knockdown cells. Heparin diminishes the avidity of colon carcinoma cells for P- and L-selectin, which may compromise integrin-mediated firm adhesion to host cells and mitigate metastasis. Our finding that CD44v is a functional P-selectin ligand on colon carcinoma provides a novel perspective on the enhanced metastatic potential associated with tumor CD44v overexpression and the role of selectins in metastasis.  相似文献   

12.
Sperandio M 《The FEBS journal》2006,273(19):4377-4389
Leukocyte rolling is an important step for the successful recruitment of leukocytes into tissue and occurs predominantly in inflamed microvessels and in high endothelial venules of secondary lymphoid organs. Leukocyte rolling is mediated by a group of C-type lectins, termed selectins. Three different selectins have been identified - P-, E- and L-selectin - which recognize and bind to crucial carbohydrate determinants on selectin ligands. Among selectin ligands, P-selectin glycoprotein ligand-1 is the main inflammatory selectin ligand, showing binding to all three selectins under in vivo conditions. Functional relevant selectin ligands expressed on high endothelial venules of lymphoid tissue are less clearly defined at the protein level. However, high endothelial venule-expressed selectin ligands were instrumental in uncovering the crucial role of post-translational modifications for selectin ligand activity. Several glycosyltransferases, such as core 2 beta1,6-N-acetylglucosaminyltransferase-I, beta1,4-galactosyltransferases, alpha1,3-fucosyltransferases and alpha2,3-sialyltransferases have been described to participate in the synthesis of core 2 decorated O-glycan structures carrying the tetrasaccharide sialyl Lewis X, a carbohydrate determinant on selectin ligands with binding activity to all three selectins. In addition, modifications, such as carbohydrate or tyrosine sulfation, were also found to contribute to the synthesis of functional selectin ligands.  相似文献   

13.
Leukocyte rolling on endothelial cells and other P-selectin substrates is mediated by P-selectin binding to P-selectin glycoprotein ligand-1 expressed on the tips of leukocyte microvilli. Leukocyte rolling is a result of rapid, yet balanced formation and dissociation of selectin-ligand bonds in the presence of hydrodynamic shear forces. The hydrodynamic forces acting on the bonds may either increase (catch bonds) or decrease (slip bonds) their lifetimes. The force-dependent 'catch-slip' bond kinetics are explained using the 'two pathway model' for bond dissociation. Both the 'sliding-rebinding' and the 'allosteric' mechanisms attribute 'catch-slip' bond behavior to the force-induced conformational changes in the lectin-EGF domain hinge of selectins. Below a threshold shear stress, selectins cannot mediate rolling. This 'shear-threshold' phenomenon is a consequence of shear-enhanced tethering and catch bond-enhanced rolling. Quantitative dynamic footprinting microscopy has revealed that leukocytes rolling at venular shear stresses (>0.6 Pa) undergo cellular deformation (large footprint) and form long tethers. The hydrodynamic shear force and torque acting on the rolling cell are thought to be synergistically balanced by the forces acting on tethers and stressed microvilli, however, their relative contribution remains to be determined. Thus, improvement beyond the current understanding requires in silico models that can predict both cellular and microvillus deformation and experiments that allow measurement of forces acting on individual microvilli and tethers.  相似文献   

14.
Sialyl Lewis(x)/E-selectin-mediated rolling in a cell-free system.   总被引:5,自引:2,他引:3       下载免费PDF全文
Selections mediate transient adhesion of neutrophils to stimulated endothelial cells at sites of inflammation by binding counter-receptors that present carbohydrates such as sialyl Lewis(x). We have developed a cell-free adhesion assay using sialyl Lewis(x)-coated microspheres and E-selection-IgG chimera-coated substrates to investigate the premise that rolling primarily results from functional properties of selection-carbohydrate bonds, whereas cellular morphology and signaling act as secondary effects. Sialyl Lewis(x)-coated microspheres attach to and roll over E-selectin-IgG chimera-coated substrates between the physiological wall shear stresses of 0.7 and 2 dynes/cm2. Rolling velocities vary with time and depend on E-selectin-IgG chimera site density and wall shear stress. Our results show that sialyl Lewis(x) is a minimal functional recognition element required for rolling on E-selectin under flow.  相似文献   

15.
As the first step in the recruitment of neutrophils into tissues, the cells become tethered to and roll on the vessel wall. These processes are mediated by interactions between the P- and E-selectins, expressed on the endothelial cells of the vessel wall, and their ligands, expressed on the neutrophils. Recently, we reported that CD43 on activated T cells functions as an E-selectin ligand and thereby mediates T cell migration to inflamed sites, in collaboration with P-selectin glycoprotein ligand-1 (PSGL-1), a major P- and E-selectin ligand. Here, we examined whether CD43 on neutrophils also functions as an E-selectin ligand. CD43 was precipitated with an E-selectin-IgG chimera from mouse bone marrow neutrophils. A CD43 deficiency diminished the E-selectin-binding activity of neutrophils when PSGL-1 was also deficient. Intravital microscopy showed that the CD43 deficiency significantly increased leukocyte rolling velocities in TNF-alpha-stimulated venules blocked with an anti-P-selectin mAb, where the rolling was mostly E-selectin dependent, when PSGL-1 was also absent. In contrast, in venules with trauma-induced inflammation, where the rolling was largely P-selectin dependent, the CD43 deficiency reduced leukocyte rolling velocities. Collectively, these observations suggest that CD43 generally serves as an antiadhesive molecule to attenuate neutrophil-endothelial interactions, but when E-selectin is expressed on endothelial cells, it also plays a proadhesive role as an E-selectin ligand.  相似文献   

16.
Leukemic cells and human hematopoietic progenitor cells expressing CD44 receptors have the ability to attach and roll on hyaluronan. We investigated quantitatively the adhesion behavior of leukemic cell lines and hematopoietic progenitor cells on thin films of the polysaccharides hyaluronan and alginate in a microfluidic system. An applied flow enhances the interaction between CD44-positive cells and hyaluronan if a threshold shear stress of 0.2 dyn/cm2 is exceeded. At shear stress ∼1 dyn/cm2, the cell rolling speed reaches a maximum of 15 μm/s. Leukemic Jurkat and Kasumi-1 cells lacking CD44-expression showed no adhesion or rolling on the polysaccharides whereas the CD44-expressing leukemic cells KG-1a, HL-60, K-562, and hematopoietic progenitor cells attached and rolled on hyaluronan. Interestingly, the observations of flow-induced cell rolling are related to those found in the recruitment of leukocytes to inflammatory sites and the mechanisms of stem-cell homing into the bone marrow.  相似文献   

17.
IL-4 is known to induce recruitment of eosinophils and mononuclear leukocytes. In vitro this occurs in part by selective expression of VCAM-1, the ligand for the alpha 4 integrin. The objective of this study was to determine the molecular mechanisms that underlie IL-4-induced leukocyte recruitment in vivo. Mice received an intrascrotal injection of IL-4 (100 ng). Twenty-four hours later, leukocyte rolling, adhesion, and emigration in cremasteric postcapillary venules were examined via intravital microscopy, and expression of VCAM-1 and P- and E-selectin was quantitated using a radiolabeled mAb technique. IL-4 increased VCAM-1 expression, but P-selectin and E-selectin remained at constitutive levels. IL-4 induced significant increases in leukocyte adhesion and emigration, with 50% of the emigrated cells being eosinophils and the remainder being mononuclear leukocytes. Leukocyte rolling in IL-4-treated mice was >95% inhibitable using an anti-P-selectin Ab. However, IL-4-induced leukocyte recruitment was unaltered in mice treated chronically with P-selectin Ab or mice deficient in either P-selectin or P- and E-selectin, suggesting that the residual rolling supported all of the IL-4-induced recruitment. In IL-4-treated mice following P-selectin blockade, tethering and rolling were not dependent on L-selectin, but were abolished by alpha 4 integrin blockade. These findings show that the alpha 4 integrin can initiate leukocyte-endothelial cell interactions in the absence of selectins under shear conditions in vivo, and that the absence of selectins does not affect recruitment of eosinophils and mononuclear cells to IL-4-treated tissue.  相似文献   

18.
19.
The firm arrest of leukocytes to the endothelium during inflammation is known to be mediated by endothelial intercellular adhesion molecules (ICAMs) binding to activated integrins displayed on leukocyte surface. Selectin-ligand interactions, which mediate rolling, are believed to be important for facilitating firm adhesion, either by activating integrins or by facilitating the transition to firm adhesion by making it easier for integrins to bind. Although leukocytes employ two distinct adhesion molecules that mediate different states of adhesion, the fundamental biophysical mechanisms by which two pairs of adhesion molecules facilitate cell adhesion is not well understood. In this work, we attempt to understand the interaction between two molecular systems using a cell-free system in which polystyrene microspheres functionalized with the selectin ligand, sialyl Lewis(X) (sLe(X)), and an antibody against ICAM-1, aICAM-1, are perfused over P-selectin/ICAM-1 coated surfaces in a parallel plate flow chamber. Separately, sLe(X)/P-selectin interactions support rolling and aICAM-1/ICAM-1 interactions mediate firm adhesion. Our results show that sLe(X)/aICAM-1 microspheres will firmly adhere to P-selectin/ICAM-1 coated surfaces, and that the extent of firm adhesion of microspheres is dependent on wall shear stress within the flow chamber, sLe(X)/aICAM-1 microsphere site density, and P-selectin/ICAM-1 surface density ratio. We show that P-selectin's interaction with sLe(X) mechanistically facilitates firm adhesion mediated by antibody binding to ICAM-1: the extent of firm adhesion for the same concentration of aICAM-1/ICAM-1 interaction is greater when sLe(X)/P-selectin interactions are present. aICAM-1/ICAM-1 interactions also stabilize rolling by increasing pause times and decreasing average rolling velocities. Although aICAM-1 is a surrogate for beta(2)-integrin, the kinetics of association between aICAM-1 and ICAM-1 is within a factor of 1.5 of activated integrin binding ICAM-1, suggesting the findings from this model system may be insightful to the mechanism of leukocyte firm adhesion. In particular, these experimental results show how two molecule systems can interact to produce an effect not achievable by either system alone, a fundamental mechanism that may pervade leukocyte adhesion biology.  相似文献   

20.
Wu S  Hoxter B  Byers SW  Tozeren A 《Biorheology》1998,35(1):37-51
Recent mathematical models show that molecular events that mediate rolling interactions also have an impact on the stochastic features of rolling. In spherical cells, statistical fluctuations in cell displacement were shown to be an indication that only a few adhesion bonds are involved in rolling interactions. In this study, we investigated whether cell shape and cell deformability could also modulate the stochastic features of rolling. As an experimental model we considered the flow-initiated rolling of MCF-10 breast epithelial cells on laminin. The dynamic adhesion of MCF-10A cells to laminin, which involves integrin alpha 6 beta 4, occurs slow enough to allow for an accurate determination of the trajectories of rolling cells. The data from high-magnification videomicroscopy showed that cell shape, cell deformability, and the level of fluid shear stress were all strong determinants of the rolling velocity and the extent of fluctuations in the trajectory of rolling cells. MCF-10A cells with large surface projections rolled faster and wobbled more extensively than spherical cells under the same flow conditions. The extent of wobbling decreased and the variation of rolling velocity increased with increasing fluid shear stress. MCF-10A cells treated with cytochalasin B, which increased cell deformability and caused extensive blebbing without significantly altering surface expression of laminin integrins, reduced mean rolling velocity and increased its variance. Because leukocytes change shape as they roll in postcapillary blood venules at high shear rates, results indicate the need for further expanding the present biophysical models of rolling to the case of deformable cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号