首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Embryos from dry caryopses of wheat ( Triticum durum L. cv. Norba) are completely devoid of ascorbate (ASC) but contain a low amount of dehydroascorbate (DHA). The de novo biosynthesis of ASC starts in the wheat embryos after 8–10 h of germination but before the ASC biosynthetic pathway is completely restored the embryos can provide themselves with ASC by the reduction of the stored DHA. Three different proteins having DHA-reducing capability are present in the embryos during the early stages of germination. However, when the de novo ASC biosynthesis from sugar is completely restored, the DHA reduction capability largely drops and only one DHA-reducing protein remains active. The presence of three proteins having DHA-reducing capability and their behaviour during germination is discussed.
Dry embryos are also devoid of ASC peroxidase (EC 1.11.1.11); this hydrogen peroxide scavenger enzyme appears after the same lag as ASC and increases during germination in parallel with the rise in ASC. When ASC biosynthesis is experimentally induced, the ASC peroxidase also appears earlier; moreover the affinities for ASC of the three ASC peroxidase isoenzymes that progressively appear during germination depend on the ASC available in the embryos: highest in the first isoenzyme, that appears when the ASC content is very low, lowest in the isoenzyme that is expressed last, when the ASC content is 10–11 times higher.  相似文献   

2.
The changes of ascorbic acid, dehydroascorbic acid, and glutathione content and related enzyme activities were studied in apple buds during dormancy and thidiazuron-induced bud break. An increase in ascorbic acid, reduced form of glutathione (GSH), total glutathione, total non-protein thiol (NPSH) and non-glutathione thiol (RSH) occurred as a result of induction by thidiazuron during bud break, whereas dehydroascorbic acid and oxidized glutathione (GSSG) decreased during the same period. Thidiazuron also enhanced the ratio of GSH/GSSG, and activities of ascorbate free radical reductase (AFR; EC 1.6.5.4), ascorbate peroxidase (EC 1.11.1.11). dehydroascorbate reductase (DHAR; EC 1.8.5.1) and glutathione reductase (GR; EC 1.6.4.2). The ascorbic acid content and the activities of AFR, ascorbate peroxidase, and DHAR peaked when buds were in the side green or green tip stage just prior to the start of rapid expansion, and declined thereafter. The GSH, NPSH, RSH, ratio of GSH/GSSG, and activities of GR increased steadily during bud development.  相似文献   

3.
The antioxidant status of potato ( Solanum tuberosum L.) tubers of two genotypes, cv. Désirée and clone 10337de40 was investigated in relation to susceptibility to internal rust spot (IRS), a Ca2+-related physiological disorder. Concentrations of total calcium within the perimedulla tissue of tubers, grown with a restricted (1 m M CaCl2) Ca2+ supply, were similar in cv. Désirée (IRS resistant) and clone 10337de40 (IRS susceptible). A range of antioxidants was assayed in order to assess antioxidant status in both genotypes under the two Ca2+ treatments. Although no appreciable differences were detected between low Ca2+ and control treatments, certain antioxidants were present at significantly higher levels in the IRS resistant genotype, cv. Désirée. These included dehydroascorbate reductase (EC 1.8.5.1) activity (more than 100% higher), total glutathione content (ca 40% higher), glutathione reductase (EC 1.6.4.2) activity (almost 50% higher), peroxidase (EC 1.11.1.7) activity (ca 60% higher) and superoxide dismutase (EC 1.15.1.1) activity (almost 80% higher). There was no difference in ascorbate content, ascorbate free radical reductase activity (EC 1.6.5.4), α-tocopherol levels and catalase activity (EC 1.11.1.6) between the two genotypes. The possible relationship between resistance to IRS and a superior antioxidant status, found in cv. Désirée, is discussed.  相似文献   

4.
Ascorbate free radical enhances vacuolization in onion root meristems   总被引:1,自引:0,他引:1  
Abstract. Ascorbate free radical (AFR) induced cell elongation in merislems of Allium cepa roots by promoting a high vacuolization as shown by the increased vacuole volume, vacuole volume density, tonoplast surface and tonoplast surface density. Accordingly, both plasma membrane- and tonoplast-associated ATPases and vacuole soluble acid phosphatase of meristematic cells were also increased. Neither the other subcellular organelles nor cell proliferation appeared to be significantly affected. It is suggested that AFR may be involved in some plasma membrane events related to the initiation of plant cell elongation.  相似文献   

5.
The role that the constituents of the ascorbate–glutathione cycle play in the mechanism of contrasting ozone sensitivities was examined in mature and old tobacco leaves after acute ozone-fumigation (150 p.p.b., 5 h). Levels of the enzyme activities associated with the detoxifying system were lower in ozone-sensitive Bel W3 control plants than in unfumigated ozone-tolerant Bel B plants. In particular, the endogenous activities of ascorbate peroxidase (APX) and glutathione reductase (GR), and the metabolites ascorbic acid (AA) and reduced glutathione (GSH) were more abundant in Bel B than Bel W3 control plants. These results suggest that the higher tolerance of Bel B to O3 is associated with a greater initial content of the antioxidant enzymes or metabolites. Only in the mature leaves of the ozone-tolerant Bel B cv. did fumigation trigger activation of APX and, weakly, of dehydroascorbate reductase (DHAR). The activity of these enzymes was significantly lower after ozone treatment in both mature and old leaves of Bel W3 than in control plants. Fumigation had little effect on the ascorbate content. Its main effects on the glutathione pool were that it boosted the oxidized form and lowered the reduced form, particularly in mature Bel W3 leaves. Extractable GR activity remained unchanged in both Bel B and Bel W3 immediately after fumigation, but increased slightly 24 h later, particularly in mature leaves of Bel W3. Exposure to O3 caused a sharp decline in chloroplastic GR mRNA levels in both cultivars. However, as Western blot analysis failed to detect any major changes in GR protein content at this time, the protein must be highly stable. There is therefore a good correlation between tolerance to O3 and high endogenous levels of antioxidant metabolites such as AA and GSH in tobacco. In addition, the degree of inducibility of the system discriminates the two cultivars investigated.  相似文献   

6.
地钱,肾蕨和中山柏的NADP硫氧还蛋白系统   总被引:1,自引:0,他引:1  
硫氧还蛋白(Td)是一类低分子量酸性蛋白,具有二硫键(-s-s-),通过氧化还原互变来参与很多反应(周志民等1986)。Td可被NADP-硫氧还蛋白还原酶(NTR)还原:  相似文献   

7.
Abstract: Transport of ascorbate (AA) and dehydroascorbate (DHA) through the petiole into detached leaves of Lepidium sativum and other plant species via the transpiration stream, and energized uptake into leaf tissue, were measured indirectly by recording changes in membrane potential and apoplastic pH simultaneously with substrate‐stimulated respiration and transpiratory water loss. When 25 mM AA or DHA was fed to the leaves, steady state respiration at 25 °C was transiently increased by more than 50 % with AA and 70 % with DHA. Stimulation of respiration was accompanied by a transient breakdown of membrane potential followed by alkalinization of the leaf apoplast suggesting energized uptake at the expense of the transmembrane proton motive force. The average CO2/AA ratio calculated from stimulated respiration during ascorbate uptake was 0.76 ± 0.26 (n = 17). The corresponding ratio for DHA was 1.38 ± 0.28 (n = 11). Far lower CO2/substrate ratios were observed when NaCl or KCl were fed to leaves. The differences indicate either partial metabolism of AA and DHA in addition to energized transport, or less likely, higher energy requirement for transport of AA and DHA than for the inorganic salts. Maximum rates of energized AA transport into leaf tissue (deduced from maxima of extra respiration and calculated on the basis of CO2/AA = 0.76) were close to 650 nmol m‐2 leaf area s‐1, i.e. far higher than most previously reported rates of transport. When the apoplastic concentration of AA was decreased below steady state levels during infiltration/centrifugation experiments, AA was released from leaf cells into the apoplast. This suggests that AA oxidation to DHA in the apoplast (as occurs during extracellular ozone detoxification) triggers energized transport of the DHA into the symplast and simultaneously AA release from the symplast into the apoplast, perhaps together with protons in a reversal of the energized uptake process.  相似文献   

8.
Effect of high intracellular concentrations of the antioxidants ascorbate and glutathione on the extractable activity of the reducting enzymes dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase were investigated with spinach cells ( Spinacia oleracea ). An elevated ascorbate concentration was obtained by treatment with the ascorbate biosynthesis precursor L-galactono-1,4-lactone (GAL). To increase the intracellular level of glutathione, cells were treated with the 5-oxo-L-proline analog L-2-oxothiazolidin-4-carboxylate (OTC), or with the peroxidative herbicide acifluorfen (sodium 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid). Extractable monodehydroascorbate reductase activity increased in the presence of a high level of ascorbate or glutathione, and enzyme activity was at maximum when cells were treated with acifluorfen + OTC, or acifluorfen + GAL. Extractable dehydroascorbate reductase activity decreased when the intracellular concentration of glutathione was high and non-enzymatic reduction of dehydroascorbate by glutathione was the dominant reaction. Maximal decrease of enzyme activity was found in cells treated with acifluorfen + OTC. Extractable activity of glutathione reductase (GR) increased after treatment of cells with acifluorfen alone, or acifluorfen + OTC, but enzyme activity was unaffected by a high intracellular concentration of glutathione obtained by treatment of cells with OTC alone, or by treatment with acifluorfen + GAL. The degree of GR activation seemed to be controlled by several factors including inhibition by a high concentration of glutathione and possibly oxidative damage to the enzyme. Overall, the enzymes tested in this study, which provide the reduced forms of ascorbate and glutathione, were differently affected by high antioxidant levels.  相似文献   

9.
Chloroplasts are a significant site for reactive oxygen species production under illumination and, thus, possess a well-organized antioxidant system involving ascorbate. Ascorbate recycling occurs in different manners in this system, including a dehydroascorbate reductase (DHAR) reaction. We herein investigated the physiological significance of DHAR3 in photo-oxidative stress tolerance in Arabidopsis. GFP-fused DHAR3 protein was targeted to chloroplasts in Arabidopsis leaves. A DHAR3 knockout mutant exhibited sensitivity to high light (HL). Under HL, the ascorbate redox states were similar in mutant and wild-type plants, while total ascorbate content was significantly lower in the mutant, suggesting that DHAR3 contributes, at least to some extent, to ascorbate recycling. Activation of monodehydroascorbate reductase occurred in dhar3 mutant, which might compensate for the lack of DHAR3. Interestingly, glutathione oxidation was consistently inhibited in dhar3 mutant. These findings indicate that DHAR3 regulates both ascorbate and glutathione redox states to acclimate to HL.  相似文献   

10.
Ex vitro transfer is often stressful for in vitro grown plantlets. Water stress and photoinhibition, often accompanying the acclimatization of in vitro grown plantlets to ex vitro conditions, are probably the main factors promoting production of reactive oxygen species (ROS) and in consequence oxidative stress. The extent of the damaging effects of ROS depends on the effectiveness of the antioxidative systems which include low molecular mass antioxidants (ascorbate, glutathione, tocopherols, carotenoids, phenols) and antioxidative enzymes (superoxide dismutase, ascorbate peroxidase, catalase, glutathione reductase, monodehydroascorbate reductase, dehydroascorbate reductase). This review is focused on ROS production and development of antioxidative system during in vitro growth and their further changes during ex vitro transfer.  相似文献   

11.
箭舌豌豆根系抗坏血酸及相关酶对镉胁迫的响应   总被引:1,自引:0,他引:1  
以箭舌豌豆(Vicia sativa L.)品种L3(耐镉)和ZM(镉敏感)为材料,研究了不同程度镉胁迫下箭舌豌豆幼苗根系抗坏血酸(AsA)含量、脱氢抗坏血酸还原酶(DHAR)同工酶活性、抗坏血酸过氧化物酶(APX)同工酶活性以及APX基因表达的变化。结果显示:(1)2个箭舌豌豆品种根系AsA和脱氢抗坏血酸(DHA)含量在镉胁迫下显著升高;AsA/DHA比值在镉耐性品种L3中显著升高,在敏感品种ZM中显著下降;相同镉处理浓度下,L3根系AsA含量和AsA/DHA比值显著大于ZM。(2)2个品种根系DHAR的活性电泳共显示4条同工酶条带,它们的活性均随镉处理浓度的升高而升高;其中DHAR1只在L3显示,DHAR4只在ZM显示;相同镉处理浓度下,品种L3的DHAR的总活性大于品种ZM。(3)2个品种根系APX的活性电泳共显示11条同工酶条带,其中的APX1、2、4仅在敏感品种ZM中受镉胁迫诱导,APX 8在耐性品种L3中受到比敏感品种ZM更显著的诱导;克隆得到1个箭舌豌豆APX基因,荧光定量RT-PCR结果显示该基因的转录在L3和ZM根系均受镉处理诱导。研究表明,镉胁迫下2个箭舌豌豆品种根系AsA含量,AsA代谢相关酶DHAR和APX的活性以及APX的转录水平均显著升高;镉耐性品种L3较敏感品种ZM能更有效地促进AsA循环,维持更高的AsA水平,从而更有效地缓解镉胁迫诱导产生的氧化胁迫,这可能是L3较ZM具有更高镉耐性的重要机制之一。  相似文献   

12.
Ascrobate free-radical reductase (EC 1.6.5.4) from potato tubers was purified to apparent homogencity by a method which included ammonium-sulfate precipitation, gel filtration and chromatography on diethylaminoethyl cellulose and hydroxylapatite. Gel filtration and gel electrophoresis showed that the purified enzyme was monomeric with a molecular weight of about 42 000. Enzyme activity was heat lable and severely inhibited by thiol reagents. The Km values for enzyme substrates were estimated.Abbreviations AFR ascorbate free radical - AsA ascorbic acid - DE-32(52) diethylaminoethyl cellulose - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]-glycine  相似文献   

13.
The minor chlorophyll a/b-binding (CAB) proteins of the liverwort Marchantia polymorpha L. were investigated in order to compare the antenna organization and the light-acclimation potential in lower and higher plants. Homologues to the minor CAB proteins CP24, CP26 and CP29 were identified by the following criteria: enrichment in photosystem II preparations, immunological cross-reactivities, spectroscopic properties and protein-fragment amino acid sequences. The high violaxanthin content of the minor CAB proteins in M. polymorpha indicates that their role in protection from high light is comparable in lower and higher plants. Considerably more-alkaline isoelectric points are found for the minor CAB proteins of M. polymorpha than for their higher-plant counterparts. This might be due to a higher content of basic amino acids. While the N-terminal sequence of angiosperm CP29 contains a threonine that becomes phosphorylated during cold stress, this amino acid is substituted by valine in M. polymorpha. Therefore, the regulatory properties of this protein could differ in lower and higher plants. Received: 25 March 1997 / Accepted: 21 July 1997  相似文献   

14.
Paclobutrazol (PBZ)- and uniconazole (UCZ)-treated plants of Echinochloa frumentacea were shorter but had much wider leaves than untreated controls 10 days after treatment. Leaves of treated plants had a slightly higher concentration of soluble protein than the controls and exhibited enhanced activities of ascorbate peroxidase, monodehydroascorbate (MDHA) reductase, and glutathione (GSH) reductase. The triazoles did not influence the activity of dehydroascorbate (DHA) reductase. The leaves of treated plants had increased concentrations of water-soluble sulfhydryls and ascorbic acid. In contrast, the concentration of malondialdehyde (MDA), a by-product of lipid peroxidation, was lower in the leaves of treated plants than in controls. These results suggest that triazole growth regulators increased the activity of the endogenous H2O2-scavenging system in E. frumentacea.  相似文献   

15.
The possible role of H2O2 metabolism on light-regulated senescence of detached rice leaves was investigated. Light retards senescence but at the same time accumulates more H2O2. Light treatment resulted in an increase in malondialdehyde level in detached rice leaves but no membrane leakage was observed in light-treated detached leaves. It seems that there was no direct relationship between lipid peroxidation and deterioration in membrane integrity. The results obtained suggest that retardation of senescence by light is closely related to high activities of superoxide dismutase and ascorbate peroxidase.  相似文献   

16.
Over 60 macrocyclic bis-bibenzyls have been isolated from hepatics. They possess various biological activities such as antimicrobial, antifungal, muscle relaxant and antitumor activities, as well as inhibitory activity against DNA polymerase β and HIV. To explore the feasibility of obtaining novel bis-bibenzyls through laboratory culture, in this study, we compare the qualitative and quantitative contents of axenically farmed and field-collected specimens of Marchantia polymorpha subsp. ruderalis (Mpr). We analyzed methanol extracts of Mpr by LC–MS, and confirmed the identity of isolable compounds by NMR. We found that extracts from natural populations of Mpr contained the known bis-bibenzyl marchantin A as a major component, while the minor components do not correspond to other known bis-bibenzyls. In contrast, the chromatograms of axenically farmed Mpr extracts were highly complex, containing numerous UV active compounds. The only similarity between natural and farmed populations of Mpr was the presence of marchantin A. In the farmed Mpr production of marchantin E, G and/or C, and dehydromarchantin A is suggested. Thus, the axenically farmed liverworts produce numerous metabolites not seen in natural populations, opening up the possibility of directing biosynthesis to either increase production of known compounds or generate new compounds through non-natural precursor feeding.  相似文献   

17.
In spinach thylakoids prepared from intact chloroplasts by shocking in the presence of ascorbate to preserve the operation of ascorbate peroxidase, the rate of oxygen uptake with methyl viologen as acceptor decreased in response to the addition of H2O2. Such a decrease was not observed in the presence of KCN or when the thylakoids lost ascorbate peroxidase activity. Illumination of intact chloroplasts in the presence of H2O2 and methyl viologen showed an initial rate of oxygen exchange, which is intermediate between the initial rate of oxygen evolution in the presence of H2O2 alone and steady-state oxygen uptake in the presence of methyl viologen. The data showed that monodehydroascorbate radical generated in ascorbate peroxidase reaction could compete with methyl viologen for electrons supplied by the electron transport chain in both thylakoids and intact chloroplasts. During the illumination of intact chloroplasts the rate of oxygen uptake increased. The presence of nigericin swiftly led to steady-state oxygen uptake, and to a clear-cut 1:1 relationship between the electron transport rate estimated from fluorescence assay and the electron transport rate determined from oxygen uptake, taking the stoichiometry 1O2:4e. The increase in oxygen uptake was attributed to the cessation of monodehydroascorbate radical generation brought about by consumption of intrachloroplast ascorbate in the peroxidase reactions, and the effects of nigericin were explained by acceleration of such consumption. The competition between methyl viologen and monodehydroascorbate radical in the intact chloroplasts was estimated under various conditions.  相似文献   

18.
The reaction of iron (II) with H2O2 is believed to generate highly reactive species (e.g., OH) capable of initiating biological damage. This study investigates the possibility that the severity of oxidative damage induced by iron in hepatic mitochondria is determined by the level of mitochondrial-H2O2 generation, which is believed to be particularly prominent in state-4 respiration.

Iron-induced damage is found to be greater in state-4 than in state-3 respiration. Experiments using uncoupling agents and Ca++ to mimic state-3 conditions indicate that this effect reflects differences in the steady-state oxidation-level of the electron carriers of the respiratory chain (and hence the level of H2O2 -generation). rather than changes in redox potential or transportation of the metal-ion. Evidence is also presented for a mechanism in which Fe(II) and H2O2 react inside the mitochondrial matrix.

Ascorbate (vitamin C) is shown to be pro-oxidant in this system. except when present at very high concentration when it becomes antioxidant in nature.  相似文献   

19.
The activity of antioxidant enzymes in different apricot (Prunus armeniaca L.) cultivars, resistant or susceptible to Plum pox virus (PPV), was analyzed during the years 2002 and 2003. Resistant cultivars showed higher activities of catalase (CAT), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) than susceptible cultivars. Only CuZn-SOD isozymes were detected in the apricot cultivars. However, no correlation was observed between this isozyme pattern and the resistance to PPV. On the other hand, PPV-resistant apricot cultivars could have a greater capability for elimination of H2O2 and recycling of ascorbate-glutathione cycle, and they have at least two of these enzymatic activities (CAT, APX and DHAR) over the average. In contrast, this response was not observed in the susceptible cultivars. All these data suggest that the activities of CAT, APX and DHAR could be used as biochemical markers of sharka resistance in apricot.  相似文献   

20.
以顽拗性Trichilia dregeana Sond.种子为材料,研究其胚轴的脱水敏感性与抗坏血酸的抗氧化作用.T.dregeana胚轴的脱水耐性随着脱水进程逐渐下降,50%的胚轴被脱水致死的含水量(W50)大约为0.16 g H2O/g DW.在脱水过程中,胚轴的电解质渗漏速率逐渐增加,超氧物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、过氧化氢酶 (CAT)、谷胱苷肽还原酶(GR)和脱氢抗坏血酸还原酶(DHAR)的活性下降,硫代巴比妥酸(TBA)-活性产物的含量增加.2.5~10.0 mmol/L抗坏血酸处理能有效地增加胚轴的脱水耐性和SOD、APX、CAT和GR的活性,降低电解质渗漏速率和TBA活性产物的含量.结果表明,T.dregeana胚轴的脱水耐性与抗氧化酶的活性增加和脂质过氧化作用的降低密切相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号